大顶堆(Max Heap)

本文详细介绍了大顶堆的数据结构特性,包括其定义、构建过程以及关键方法如peek(),pop(),offer(),heapify(),up()和down()的实现。通过实例代码展示了如何在Java中操作大顶堆以保持其最大值性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大顶堆(Max Heap)

大顶堆是一种特殊的树形数据结构,它满足以下性质:

  • 它是一个完全二叉树:除了最底层外,每一层都被完全填满。在最底层,所有的元素都应该尽可能地靠左排列。

  • 每个节点的值都大于或等于其子节点的值。这就是为什么它被称为大顶堆。

下面是一个大顶堆的示例:

请添加图片描述

上图中,根节点(100)是所有节点中的最大值。同样,每个父节点的值都大于或等于其子节点的值。

好的,下面我将会分别介绍每个部分的代码:

定义变量

int[] array;
int size;

在这里,我们定义了两个成员变量。array 是用来存储堆中的元素的数组,size 是用来表示当前堆的大小。

构造函数

public MaxHeap(int[] array){
   
    this.array = array;
    this.size = array.length;
    heapify();
}

在构造函数中,我们初始化 arraysize,并调用 heapify() 方法来构建大顶堆。

peek() 方法

public int peek(){
   
    if(size == 0)
        throw new IndexOutOfBoundsException();
    return array[0]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林小果呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值