学生信息数据分析与可视化

一、引言

在本次实践中,我们对班级学生信息表进行了深入的数据分析与可视化操作。通过运用多种数据处理和可视化工具,旨在清晰呈现学生各项信息的分布特征,为后续可能的教学管理等工作提供数据支持。

二、软件制作过程

(一)数据读取

首先,利用 Python 的 pandas 库读取从钉钉群下载的学生信息表。代码如下:

import pandas as pd
student_info = pd.read_excel('学生信息表.xlsx') # 根据实际文件格式调整

这一步骤是后续所有分析的基础,确保数据准确无误地导入到程序中。在实际操作中,可能会遇到文件路径错误、文件格式不兼容等问题,需要仔细检查文件位置和格式设置。

(二)性别饼状图可视化

使用 matplotlib 库来制作同学性别饼状图。代码如下:

import matplotlib.pyplot as plt
gender_counts = student_info['性别'].value_counts()
plt.pie(gender_counts, labels=gender_counts.index, autopct='%1.1f%%')
plt.title('学生性别分布')
plt.show()

通过对 “性别” 列进行计数统计,然后利用plt.pie函数绘制饼图,能直观地看到不同性别的学生占比情况。在调整图表样式时,可进一步设置颜色、字体等参数,使图表更加美观。

(三)省份地图可视化

借助 pyecharts 库实现同学所在省份在中国地图上的可视化。示例代码:

from pyecharts.charts import Map
from pyecharts import options as opts
province_counts = student_info['所在省份'].value_counts()
data_pair = list(zip(province_counts.index.tolist(), province_counts.values.tolist()))
map_chart = Map()
map_chart.add("学生分布", data_pair, "china")
map_chart.set_global_opts(title_opts=opts.TitleOpts(title="学生所在省份分布"))
map_chart.render('student_province_map.html')

此过程先统计各省份的学生数量,将数据整理成合适格式后添加到地图图表中,最后生成 html 格式的可视化文件。在实际应用中,可以根据需求添加更多交互功能,如点击显示具体数量等。

(四)城市柱状图可视化

运用 matplotlib 制作所在城市柱状图,代码为:

city_counts = student_info['所在城市'].value_counts()
city_counts.plot(kind='bar')
plt.title('学生所在城市分布')
plt.xlabel('城市')
plt.ylabel('人数')
plt.show()

通过对 “所在城市” 列的计数,以柱状图形式展示各城市学生数量,方便对比不同城市的学生分布差异。在处理数据时,如果城市名称过多导致横坐标标签显示拥挤,可通过旋转标签等方式优化显示效果。

(五)签名词云化

利用 wordcloud 库实现签名词云化,代码如下:

from wordcloud import WordCloud
import jieba
text = ' '.join(student_info['签名'].dropna().tolist())
wordlist = jieba.lcut(text)
new_text = ' '.join(wordlist)
wc = WordCloud(width=800, height=400, background_color='white').generate(new_text)
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.show()

先将签名文本进行整理,通过结巴分词对文本进行处理,再生成词云。在这个过程中,可根据需要调整词云的形状、颜色等参数,突出显示高频词汇。

(六)成绩分布折线图可视化

用 matplotlib 绘制成绩分布折线图,示例代码:

import numpy as np
bin_edges = np.linspace(student_info['成绩'].min(), student_info['成绩'].max(), 10)
bin_counts, _ = np.histogram(student_info['成绩'], bins=bin_edges)
plt.plot(bin_edges[:-1], bin_counts)
plt.title('学生成绩分布')
plt.xlabel('成绩区间')
plt.ylabel('人数')
plt.show()

通过划分成绩区间并统计各区间人数,以折线图形式展示成绩分布情况。在确定区间数量和范围时,可根据实际数据特点进行调整,以便更准确地反映成绩分布特征。

(七)宿舍分布关系图

使用 networkx 和 matplotlib 制作宿舍分布关系图,代码如下:

import networkx as nx
import matplotlib.pyplot as plt
G = nx.Graph()
for _, row in student_info.iterrows():
    G.add_edge(row['学号'], row['宿舍号'])
nx.draw(G, with_labels=True)
plt.title('宿舍分布关系图')
plt.show()

通过构建图结构,将学号和宿舍号作为节点连接起来,绘制出关系图。在复杂的宿舍分布情况下,可进一步优化布局算法,使图形更加清晰易读。

三、设计思想

选择不同的可视化方式是基于各信息的特点和展示目的。例如,性别是分类数据,饼状图能很好地展示各分类的比例关系;省份具有地理属性,用中国地图可视化可以直观呈现地域分布情况;城市分布用柱状图便于对比不同城市的数量差异;签名词云化能突出高频词汇,展示签名文本的整体特征;成绩分布折线图可清晰反映成绩在不同区间的人数变化趋势;宿舍分布关系图以图形化方式呈现学号与宿舍号的关联。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值