目录
前言
Anaconda 是每个 Python 开发者必备的工具之一,尤其是在进行数据科学、机器学习和科学计算等领域的项目时。作为一个集成的 Python 发行版,Anaconda 不仅包含了最流行的 Python 库,还提供了强大的包管理和环境管理功能,极大简化了多版本 Python 和依赖库的管理。它内置的工具如 Jupyter Notebook、Spyder 等,也为开发者提供了一个方便的开发环境,减少了配置和兼容性问题带来的困扰。
在 Windows 环境下,Anaconda 的安装与配置相对简单,并且可以快速上手应用于各类项目。本篇博客将详细介绍 Anaconda 的安装过程、相关配置方法以及常用的命令,帮助你快速掌握 Anaconda 的使用,为你的 Python 开发工作提供强大的支持。无论你是初学者,还是经验丰富的开发者,都希望这篇博客能帮助大家入门并了解 Anaconda 的强大功能,优化开发体验。
Anaconda的安装与配置
Anaconda的下载
(1)进入官网下载
这里给出下载链接: Download
进入这个网址后我们还无法找到对应的下载链接,它会提示你注册。
没有关系,无需注册这里我们选择跳过,真正的下载链接就出来啦。
点击这里我们就将下载最新版的Anaconda。
这里提一嘴下载页面下方还有的Miniconda是什么。
Miniconda 是一个 Anaconda 的轻量级替代,默认只包含了 python 和 conda,但是可以通过 pip 和 conda 来安装所需要的包。
(2)百度网盘
这里博主分享了目前最新的Anaconda:Anaconda3-2024.06的安装包在百度网盘中,大家也可以自取。
下载链接:百度网盘
提取码:6666
Anconda的安装过程
1.打开下载好的exe文件,点击【Next】。
2.点击【I agree】:接受协议
3.这里是一个选择【Just Me】是仅为当前用户安装,【All Users】是为所有用户安装(需要管理员权限)。这里博主选择为所有用户安装。
4.选择下载路径,然后点击【Next】。建议修改,别放在c盘,conda环境多了以后内存占用还是挺大的。(不过想让conda环境安装在别的地方还得进行存放路径修改,这点大家放心,后面会提到)
5.勾选这三条,进行最后的安装。
创建开始菜单
base环境以python3.11创建
清除包缓存
安装好后我们自己点击后续的【Next】就好了。
注意!!!如果你的conda下载过程中有这一步的话可以跳过后面的环境变量配置,直接勾选下一步即可。
Anaconda环境变量的配置
为什么要配置环境变量?
这是没配环境变量之前:
输入一行简单的conda命令
可以看到终端无法识别命令。
这是配了环境变量之后:
简单来说配置环境变量可以更方便地让我们使用软件。
如果没配置,那只能通过打开conda命令窗:Anaconda Prompt的方式使用了:
它会默认给我们进入base环境,再次输入相同命令测试:
命令也是能正常使用的。
Conda 环境 是一种独立的、隔离的工作空间,可以为不同的项目安装不同版本的 Python 和相关库,而不会互相冲突。它是由 Conda 包管理器管理的,用于解决多个项目之间依赖不同库版本时的冲突问题。
简单来说就是你可以灵活创建不同的Conda环境,让项目在专属的环境下开发,比如:A项目使用Python3.8,B项目使用Python3.10。
好啦,接下来让我们配置系统环境变量
之前博主配置其它环境变量时看很多教程都是用右键【此电脑】→【属性】→【高级系统设置】→【环境变量】→【Path】
但是这里博主告诉大家我们可以利用点击【Windows键】的搜索功能一步到【高级系统设置】,进而去配置环境变量:
点就后会直接弹出这个界面,然后我们直接进入【环境变量】:
然后我们在系统环境变量中找到【Path】双击进入进行添加:
然后根据自己的Anaconda安装路径添加这五条到【Path】:
G:\3. utils\Anaconda
G:\3. utils\Anaconda\Scripts
G:\3. utils\Anaconda\Library\mingw-w64\bin
G:\3. utils\Anaconda\Library\usr\bin
G:\3. utils\Anaconda\Library\bin
一般来说只需要替换G:\3. utils\Anaconda,这一部分即可
到此你的Anaconda就算是安装完成啦。
不过不要着急,我们再次测试一下conda命令。(注意没有[]哈,这是为了方便大家观看我才加的)
conda activate [环境名]
这条指令用来切换环境
可以看到我们,【conda env list】这条命令可以正常使用但是无法使用【conda activate [环境名]】切换conda环境。我们不是配置好了环境变量吗?为什么还有命令无法使用? (#`Д´)ノ
原来conda它提示我们需要【conda init】初始化conda后再使用这条命令。
那我们就照做给它初始化呗,命令行输入:【conda init】,conda将完成初始化。我们关闭命令窗,并新开一个再试试刚才的命令:
发现成功了,C:\Users\zuoy>前面的(test1)就代表我们在test1这个环境中。值得一提的是你没新开命令窗在之前进行conda初始化后的命令窗进行再次测试这条命令时还是无法成功的。
好啦,环境变量的配置就到此结束了。
Anaconda的配置
镜像源配置
为什么要配置镜像源?镜像源是什么?
镜像源 是一个用于存储和分发软件包的服务器,通常是官方软件仓库的副本(镜像)。镜像源的作用是为用户提供更快的下载速度和更稳定的服务,尤其在网络连接不佳或服务器距离较远的情况下。
简单来说就是我们平时下载很多依赖库都是国外的,下载会非常慢,甚至会出现超时错误,配置了国内镜像源(如阿里源,清华源)后,就相当于从国内仓库拉取依赖库,下载速度将得到显著的提升,并且不易超时报错。
这里博主以配置清华镜像源为例:
在命令窗输入这几条命令即可
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud//pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/
conda config --set show_channel_urls yes #设置搜索时显示通道地址
然后我们还可以通过以下命令查看配置的镜像源
conda config --show channels
结果如下:
这里再给出一条命令,删除镜像源恢复默认源:
conda config --remove-key channels
运行结果如下:
到这里我们conda镜像源就配置好了。
pip镜像源配置
相信大家学过python的对pip肯定不会陌生,它同样是python的一个包管理工具,我们在conda环境中也能通过它来安装我们需要的依赖库。接下来教大家如何配置它的镜像源加速。
同样以清华源为例:
(1)临时使用镜像源
pip install [包名] -i https://pypi.tuna.tsinghua.edu.cn/simple
这将在我们下载包的时候临时使用清华镜像源。
(2)电脑全局配置镜像源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
这是针对于电脑全局的 pip 配置,会影响你在整个系统中使用 pip 安装 Python 包的行为。
conda虚拟环境存放路径修改
如果进行完上述步骤后测试使用【conda create -n [name] python=[version] 】命令创建新环境的话,你会发现无论如何conda都将把环境安装在c盘目录下,这点还是很让很多人头疼的,毕竟谁也不想看见c盘以后是红色的,下面博主教大家如何修改。
在我们的C:\Users\用户名下有一个 .condarc 文件,将其打开,在其末尾添加下面内容:
envs_dirs:
- G:\3. utils\Anaconda\envs注意替换为自己的路径
好了,到这里你就可以试试创建conda环境了。
如果修改了这个还没成功的话,那就是存在文件权限问题了。别灰心,博主会带着大家解决这个头疼的问题。
找到你指定的conda环境存放目录,以博主为例,找到我的envs文件夹,按下【Alt+Enter】键进入该文件夹的属性编辑,点击安全,修改Users的权限,全改为允许。
如果这个属性编辑界面和我一样,不会修改文件权限的小伙伴可以看我另外一篇博客解决【Windows11】文件权限修改,这篇博客将以这个文件夹为例修改文件权限。
修改完后我们创建conda环境应该是这样的,快去看看你成功没有。
好了到这里我们conda的安装与基本配置就以及完成了,你已经得到了一个具有良好配置的conda。
总结
相信通过这篇博客你已经获得了一个具有良好配置的conda,并且对conda的一些基本知识有了一定的了解。
想了解一下pip和conda下载依赖库有什么区别的小伙伴们也可以看下博主的另外一篇文章: