用辗转相除法求任意2个数的最大公约数

首先辗转相除法的定义:2个数,较大数除以较小数,若得到一个不为0的余数,则用较小数除以余数,最终得到余数为0,那么最后那个除数就是最大公约数。
原理很简单:较大数等于较小数的几倍加上一个余数,若最大公约数为m,那么余数也应能整除m,所以现在转换成求余数与较小数的最大公约数m,一直除,直到求最后2个数的最大公约数。直到余数为0,说明最后2个数中的除数就是最大公约数。
代码如下:

#include <stdio.h>
int main()
{
int a,b,c=1;
scanf_s("%d%d",&a,&b);
if(b>a)
{
int t=0;
t=a;
a=b;
b=t;
}
while(c)//直到余数为0,用循环语句
{
c=a%b;//当余数c等于0时,b就是最大共约数
a=b;//把b赋给了a
b=c;
}
printf("%d",a);//a为最大公约数
return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值