人工智能---机器学习

本文介绍了人工智能的三大关键概念——人工智能、机器学习和深度学习,详细阐述了它们的定义、核心要素以及在实际应用中的重要性。此外,文章还对机器学习的几种主要类型及其应用场景进行了深入讲解,包括监督学习、无监督学习和强化学习。
摘要由CSDN通过智能技术生成

一,人工智能三大概念

  

人工智能的三大概念包括:人工智能(AI)、机器学习(ML)和深度学习(DL)1。让我为您详细介绍一下这三个概念:

  1. 人工智能(AI)

    • 人工智能是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的新技术科学。
    • AI的三个核心要素是:数据算法算力。这三要素缺一不可,都是AI取得成就的必备条件。
    • 人工智能的英文缩写为AI,它可以通过普通计算机程序来呈现人类智能的技术。
  2. 机器学习(ML)

    • 机器学习是人工智能的核心分支,它使计算机能够从数据中学习和提取知识,而无需进行明确的编程。
    • ML模型可以根据输入数据做出预测或者做出决策。常见的机器学习技术包括监督学习、无监督学习和强化学习等。
  3. 深度学习(DL)

    • 深度学习是机器学习的一个子集,它基于神经网络模型。
    • 通过大量数据和计算能力,深度学习模型能够学习复杂的特征表示和抽象。

这三个概念相互交叉和支持,共同推动了人工智能的发展,并在各个领域中取得了重要的突破和应用。除了上述三个主要领域外,人工智能还涉及到其他重要的领域和子领域,例如计算机视觉、自然语言处理、强化学习等2

二,机器学习

机器学习的基本思路

  1. 把现实生活中的问题抽象成数学模型,并且很清楚模型中不同参数的作用
  2. 利用数学方法对这个数学模型进行求解,从而解决现实生活中的问题
  3. 评估这个数学模型,是否真正的解决了现实生活中的问题,解决的如何

     

机器学习根据训练方法大致可以分为3大类:

  1. 监督学习

    • 监督学习是指我们给算法一个数据集,并且给定正确答案。
    • 主要任务包括:
      • 回归:预测连续的、具体的数值,例如支付宝里的芝麻信用分数。
      • 分类:对各种事物分门别类,用于离散型预测。
  2. 无监督学习

    • 在无监督学习中,给定的数据集没有“正确答案”,所有的数据都是一样的。
    • 任务是从给定的数据集中挖掘出潜在的结构。
    • 例如,某超市通过分析客人的收银条,发现买尿不湿的顾客往往会同时购买啤酒,因为来买尿不湿的都是爸爸。超市因此将啤酒和尿不湿摆放在一起。
  3. 强化学习

    • 强化学习更接近生物学习的本质,关注智能体如何在环境中采取一系列行为,从而获得最大的累积回报。
    • 通过强化学习,一个智能体应该知道在什么状态下应该采取什么行为,类似于在走迷宫时在撞墙后修改路线,最终找到出口。
  4. 深度学习

    • 深度学习需要大量的数据,在数据不足时,传统的机器学习可能效果更好。
    • 深度学习对硬件要求高,一些小型项目可能无法提供足够的资源。
    • 它可以解决问题,但不能告诉人类为什么。例如,深度学习可以评审作文,但无法提出修改意见。
  5. 其他常见算法

    • 线性回归:用于预测连续数值。
    • 逻辑回归:用于分类问题,例如判断邮件是否是垃圾邮件。
    • 线性判别分析 (LDA):有监督的数据降维方法。
    • 朴素贝叶斯:基于概率的分类器。
    • K近邻 (KNN):根据最近邻的数据点进行分类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值