LeetCode刷题--- 环形子数组的最大和

本文介绍了如何使用动态规划解决环形子数组最大和问题,区分了数组内部和首尾相连的情况,并详细讲解了状态转移方程和代码实现。作者在C++和C语言环境下演示了解题过程,适用于数据结构与算法学习者。
摘要由CSDN通过智能技术生成

个人主页:元清加油_【C++】,【C语言】,【数据结构与算法】-CSDN博客

个人专栏

力扣递归算法题

 http://t.csdnimg.cn/yUl2I

【C++】    

​​​​​​http://t.csdnimg.cn/6AbpV

数据结构与算法

 ​​​http://t.csdnimg.cn/hKh2l


前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的  

我讲述题目会把讲解部分分为3个部分:
1、题目解析

2、算法原理思路讲解

3、代码实现


环形子数组的最大和

题目链接:环形子数组的最大和

题目

给定一个长度为 n 的环形整数数组 nums ,返回 nums 的非空 子数组 的最大可能和 

环形数组 意味着数组的末端将会与开头相连呈环状。形式上, nums[i] 的下一个元素是 nums[(i + 1) % n] , nums[i] 的前一个元素是 nums[(i - 1 + n) % n] 。

子数组 最多只能包含固定缓冲区 nums 中的每个元素一次。形式上,对于子数组 nums[i], nums[i + 1], ..., nums[j] ,不存在 i <= k1, k2 <= j 其中 k1 % n == k2 % n 。

示例 1:

输入:nums = [1,-2,3,-2]
输出:3
解释:从子数组 [3] 得到最大和 3

示例 2:

输入:nums = [5,-3,5]
输出:10
解释:从子数组 [5,5] 得到最大和 5 + 5 = 10

示例 3:

输入:nums = [3,-2,2,-3]
输出:3
解释:从子数组 [3] 和 [3,-2,2] 都可以得到最大和 3

提示:

  • n == nums.length
  • 1 <= n <= 3 * 104
  • -3 * 104 <= nums[i] <= 3 * 104

解法

算法原理讲解

本题与「最大子数组和」的区别在于,考虑问题的时候不仅要分析「数组内的连续区域」,还要考 虑「数组首尾相连」的⼀部分。结果的可能情况分为以下两种:
  1. 结果在数组的内部,包括整个数组。
  2. 结果在数组首尾相连的⼀部分上。

对于第⼀种情况,我们仅需按照「最大子数组和」的求法就可以得到结果,记为 fmax 。 对于第二种情况,我们可以分析⼀下:
  1. 如果首尾相连的位置是最大的子数组和,那么中间会空出一部分来。
  2. 因为数组的总和 sum 是不变的,所以中间空出来的一部分必定是最小的子数组和。

 对于第⼆种情况的最大和,应该等于 sum - gmin ,其中 gmin 表示数组内的「最小子数组和」。

两种情况的最大值就是我们最后要的结果。


我们这题使用动态规划,我们做这类题目可以分为以下五个步骤

  1. 状态显示
  2. 状态转移方程
  3. 初始化(防止填表时不越界)
  4. 填表顺序
  5. 返回值
  • 状态显示

f[i] 表示: 以 i  位置元素为结尾的「所有子数组」中和的最大和。

g[i] 表示: 以 i  位置元素为结尾的「所有子数组」中和的最小和。

  • 状态转移方程

f[i] 的所有可能可以分为以下两种:

  1. 子数组的长度为 1 :此时 f[i] = nums[i] ;
  2. 子数组的长度大于 1 :此时 f[i] 应该等于 以 i - 1 做结尾的「所有⼦数组」中和的最大值再加上 nums[i] ,也就是 f[i - 1] + nums[i] 。

由于我们要的是「最大值」,因此应该是两种情况下的最大值,因此可得转移方程: f[i] = max(nums[i], f[i - 1] + nums[i]) 。

同理可得,我们可以得出 f[i] 和 g[i] 的状态转移方程

  1. f[i] = max(nums[i], f[i - 1] + nums[i]) 。
  2. g[i] = min(nums[i], g[i - 1] + nums[i]) 。

  • 初始化(防止填表时不越界)

最前面加上⼀个格子,并且让 f[0] = 0 和 g[0] = 0 即可。

  • 填表顺序

根据「状态转移方程」易得,填表顺序为「从左往右」。

  • 返回值
  1. 先找到 f 表里面的最大值 -> fmax
  2. 找到 g 表里面的最小值 -> gmin
  3. 统计所有元素的和 -> sum
直接返回 两种情况下的最大值,就是我们要的结果吗?
错错错!!!
由于数组内有可能全部都是负数(例如[-1,-2,-3],正确结果应该是-1,但是这样求出的结果是0),第⼀种情况下的结果是数组内的最大值(是个负数),第 ⼆种情况下的 gmin == sum ,求的得结果就会是 0 。若直接求两者的最⼤值,就会是 0 。但是实际的结果应该是数组内的最⼤值。对于这种情况,我们需要特殊判断⼀下。
返回 sum == gmin ? fmax : max(fmax, sum - gmin)

代码实现

class Solution {
public:
    int maxSubarraySumCircular(vector<int>& nums) 
    {
        int n = nums.size();
        int sum = 0;			// 整个数组的和
        vector<int> f(n+1);		// 以i为结尾,最大的子数组和
        vector<int> g(n+1);		// 以i为结尾,最小的子数组和
        int fmax = INT_MIN, gmin = INT_MAX;

        // 初始化
        f[0] = 0;
        g[0] = 0;

        // 填表
        for (int i = 1; i <= n; i++)
        {
            f[i] = max(nums[i-1], nums[i-1] + f[i - 1]);
            g[i] = min(nums[i-1], nums[i-1] + g[i - 1]);

            fmax = max(fmax, f[i]);
            gmin = min(gmin, g[i]);

            sum += nums[i-1];
        }

        return sum == gmin ? fmax : max(fmax, sum - gmin);
    }
};

评论 43
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-元清-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值