个人主页:元清加油_【C++】,【C语言】,【数据结构与算法】-CSDN博客
个人专栏
力扣递归题
【C++】
http://t.csdnimg.cn/6AbpV
数据结构
前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的
我讲述题目会把讲解部分分为3个部分:
1、题目解析
2、算法原理思路讲解
3、代码实现
最长递增子序列
题目链接:最长递增子序列
题目
给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的
子序列
。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3] 输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7] 输出:1
提示:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
进阶:
- 你能将算法的时间复杂度降低到
O(n log(n))
吗?
解法
算法原理解析
我们这题使用动态规划,我们做这类题目可以分为以下五个步骤
- 状态显示
- 状态转移方程
- 初始化(防止填表时不越界)
- 填表顺序
- 返回值
- 状态显示
dp[i] 表示
:以
i
位置元素为结尾的「所有子序列」中,最长递增子序列的长度。
- 状态转移方程
对于
dp[i]
,我们可以根据「⼦序列的构成⽅式」,进⾏分类讨论:
- 子序列长度为 1 :只能⾃⼰玩了,此时 dp[i] = 1 ;
- 子序列长度大于 1 : nums[i] 可以跟在前⾯任何⼀个数后⾯形成⼦序列。 设前⾯的某⼀个数的下标为 j ,其中 0 <= j <= i - 1 。 只要 nums[j] < nums[i] , i 位置元素跟在 j 元素后⾯就可以形成递增序列,长度为 dp[j] + 1 。
- 因此,我们仅需找到满足要求的最⼤的 dp[j] + 1 即可。
综上,
dp[i] = max(dp[j] + 1, dp[i])
,其中
0 <= j <= i - 1 && nums[j] < nums[i] 。
- 初始化(防止填表时不越界)
所有的元素「单独」都能构成⼀个递增⼦序列,因此可以将
dp
表内所有元素初始化为
1
。
由于⽤到前⾯的状态,因此我们循环的时候从第⼆个位置开始即可。
- 填表顺序
根据「状态转移⽅程」易得,填表顺序为「从左往右」。
- 返回值
由于不知道最⻓递增⼦序列以谁结尾,因此返回
dp
表⾥⾯的「最⼤值」。
代码实现
class Solution {
public:
int lengthOfLIS(vector<int>& nums)
{
int n = nums.size();
vector<int> dp(n + 1,1); // 以i为结尾,最长的子序列
dp[0] = 1; // 初始化
int ans = 1;
// 填表
for (int i = 1; i < n; i++)
{
for (int j = 0; j < i; j++)
{
if (nums[j] < nums[i])
{
dp[i] = max(dp[j] + 1, dp[i]);
}
ans = max(ans, dp[i]);
}
}
return ans;
}
};