LeetCode刷题--- 最长递增子序列

个人主页:元清加油_【C++】,【C语言】,【数据结构与算法】-CSDN博客

个人专栏

力扣递归题

 http://t.csdnimg.cn/yUl2I

【C++】    

​​​​​​http://t.csdnimg.cn/6AbpV

数据结构

 ​​​http://t.csdnimg.cn/hKh2l


前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的  

我讲述题目会把讲解部分分为3个部分:
1、题目解析

2、算法原理思路讲解

3、代码实现


最长递增子序列

题目链接:最长递增子序列

题目

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的

子序列

。 

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

进阶:

  • 你能将算法的时间复杂度降低到 O(n log(n)) 吗?

解法

算法原理解析

我们这题使用动态规划,我们做这类题目可以分为以下五个步骤

  1. 状态显示
  2. 状态转移方程
  3. 初始化(防止填表时不越界)
  4. 填表顺序
  5. 返回值
  • 状态显示
dp[i] 表示 :以 i 位置元素为结尾的「所有子序列」中,最长递增子序列的长度。
  • 状态转移方程
对于 dp[i] ,我们可以根据「⼦序列的构成⽅式」,进⾏分类讨论:
  1. 子序列长度为 1 :只能⾃⼰玩了,此时 dp[i] = 1
  2. 子序列长度大于 1 nums[i] 可以跟在前⾯任何⼀个数后⾯形成⼦序列。 设前⾯的某⼀个数的下标为 j ,其中 0 <= j <= i - 1 只要 nums[j] < nums[i] i 位置元素跟在 j 元素后⾯就可以形成递增序列,长度dp[j] + 1
  3. 因此,我们仅需找到满足要求的最⼤的 dp[j] + 1 即可。
综上, dp[i] = max(dp[j] + 1, dp[i]) ,其中 0 <= j <= i - 1 && nums[j] < nums[i] 。
  • 初始化(防止填表时不越界)
所有的元素「单独」都能构成⼀个递增⼦序列,因此可以将 dp 表内所有元素初始化为 1
由于⽤到前⾯的状态,因此我们循环的时候从第⼆个位置开始即可。
  • 填表顺序

根据「状态转移⽅程」易得,填表顺序为「从左往右」。

  • 返回值
由于不知道最⻓递增⼦序列以谁结尾,因此返回 dp 表⾥⾯的「最⼤值」。

代码实现

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) 
    {
        int n = nums.size();

        vector<int> dp(n + 1,1);			// 以i为结尾,最长的子序列
        dp[0] = 1;						// 初始化

        int ans = 1;
        // 填表
        for (int i = 1; i < n; i++)
        {
            for (int j = 0; j < i; j++)
            {
                if (nums[j] < nums[i])
                {
                    dp[i] = max(dp[j] + 1, dp[i]);
                }
                ans = max(ans, dp[i]);
            }
        }

        return ans;

 
    }
};

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-元清-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值