LeetCode刷题---【模板】01背包

前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的  

我讲述题目会把讲解部分分为3个部分:
1、题目解析

2、算法原理思路讲解

3、代码实现


【模板】01背包

题目链接:【模板】01背包_牛客题霸_牛客网

题目

描述

你有一个背包,最多能容纳的体积是V。

现在有n个物品,第i个物品的体积为vi​ ,价值为wi​。

(1)求这个背包至多能装多大价值的物品?

(2)若背包恰好装满,求至多能装多大价值的物品?

输入描述:

第一行两个整数n和V,表示物品个数和背包体积。

接下来n行,每行两个数vi​和wi​,表示第i个物品的体积和价值。

1≤10001≤n,V,vi​,wi​≤1000

输出描述:

输出有两行,第一行输出第一问的答案,第二行输出第二问的答案,如果无解请输出0。

示例1

输入:

3 5
2 10
4 5
1 4

复制输出:

14
9

复制说明:

装第一个和第三个物品时总价值最大,但是装第二个和第三个物品可以使得背包恰好装满且总价值最大。 

示例2

输入:

3 8
12 6
11 8
6 8

复制输出:

8
0

复制说明:

装第三个物品时总价值最大但是不满,装满背包无解。 

备注:

要求O(nV)的时间复杂度,O(V)空间复杂度

解法

算法原理与解析

我们这题使用动态规划,我们做这类题目可以分为以下五个步骤

  1. 状态显示
  2. 状态转移方程
  3. 初始化(防止填表时不越界)
  4. 填表顺序
  5. 返回值
我们先解决第⼀问:求这个背包至多能装多大价值的物品?
  • 状态显示
dp[i][j] 表示 :从前 i 个物品中挑选,总体积「不超过」 j ,所有的选法中,能挑选出来的最大价值。
  • 状态转移方程
线性 dp 状态转移⽅程分析⽅式,⼀般都是根据「最后⼀步」的状况,来分情况讨论:
  • 不选第 i 个物品:相当于就是去前 i - 1 个物品中挑选,并且总体积不超过 j 。此时 dp[i][j] = dp[i - 1][j] 。
  • 选择第 i 个物品:那么我就只能去前 i - 1 个物品中,挑选总体积不超过 j - v[i] 的物品。此时 dp[i][j] = dp[i - 1][ j - v[i] ] + w[i] 。但是这种状态不⼀定存在,因此需要特判⼀下。
综上,状态转移⽅程为: dp[i][j] = max(dp[i - 1][ j ],  dp[i - 1] [j - v[i] ] + w[i])
  • 初始化(防止填表时不越界)
我们多加⼀行,方便我们的初始化,此时仅需将第⼀行初始化为 0 即可。因为什么也不选,也能 满足体积不⼩于 j 的情况,此时的价值为 0
  • 填表顺序

根据「状态转移⽅程」,我们仅需「从上往下」填表即可。

  • 返回值

根据「状态表⽰」,返回 dp[n][V]

 接下来解决第⼆问: 若背包恰好装满,求至多能装多大价值的物品?

  1. 第⼆问仅需微调⼀下 dp 过程的五步即可。
  2. 因为有可能凑不⻬ j 体积的物品,因此我们把不合法的状态设置为 -1

  • 状态显示
dp[i][j] 表⽰:从前 i 个物品中挑选,总体积「正好」等于 j ,所有的选法中,能挑选出来的最⼤价值。
  • 状态转移方程

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i])
但是在使⽤ dp[i - 1][j - v[i]] 的时候,不仅要判断 j >= v[i] ,⼜要判断 dp[i - 1][j - v[i]] 表⽰的情况是否存在,也就是 dp[i - 1][j - v[i]] != -1
  • 初始化(防止填表时不越界)
我们多加⼀行,方便我们的初始化:
  1. 第⼀个格⼦为 0 ,因为正好能凑⻬体积为 0 的背包;
  2. 但是第⼀⾏后⾯的格⼦都是 -1 ,因为没有物品,⽆法满⾜体积⼤于 0 的情况。
  • 填表顺序

根据「状态转移⽅程」,我们仅需「从上往下」填表即可。

  • 返回值

由于最后可能凑不成体积为 V 的情况,因此返回之前需要「特判」⼀下。


代码实现 

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>

#include <climits>
#include <cstring>
using namespace std;

const int N = 1010;
int n, V, v[N], w[N];
int dp[N][N];
int main()
{
	// 读⼊数据
	cin >> n >> V;
	for (int i = 1; i <= n; i++)
	{
		cin >> v[i] >> w[i];
	}

	// 解决第⼀问
	for (int i = 1; i <= n; i++)
	{
		for (int j = 0; j <= V; j++) // 修改遍历顺序
		{
			dp[i][j] = dp[i - 1][j];
			if (j >= v[i])
				dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);
		}
	}
	cout << dp[n][V] << endl;

	// 解决第⼆问
	memset(dp, 0, sizeof dp);
	for (int j = 1; j <= V; j++)
	{
		dp[0][j] = -1;
	}
	for (int i = 1; i <= n; i++)
	{
		for (int j = 0; j <= V; j++) // 修改遍历顺序
		{
			dp[i][j] = dp[i - 1][j];
			if (j >= v[i] && dp[i - 1][j - v[i]] != -1)
				dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i]] + w[i]);
		}
	}
		

	cout << (dp[n][V] == -1 ? 0 : dp[n][V]) << endl;
	return 0;
}
背包问题基本上都是利⽤「滚动数组」来做空间上的优化:
  1. 利⽤「滚动数组」优化;
  2. 直接在「原始代码」上修改。
在01背包问题中,优化的结果为:
  1. 删掉所有的横坐标;
  2. 修改⼀下 j 的遍历顺序。

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>

#include <climits>
using namespace std;
const int N = 1010;
int n, V, v[N], w[N];
int dp[N];
int main()
{
	// 读⼊数据
	cin >> n >> V;
	for (int i = 1; i <= n; i++)
	{
		cin >> v[i] >> w[i];
	}
	// 解决第⼀问
	for (int i = 1; i <= n; i++)
	{
		for (int j = V; j >= v[i]; j--) // 修改遍历顺序
		{
			dp[j] = max(dp[j], dp[j - v[i]] + w[i]);
		}
	}
		
	cout << dp[V] << endl;
	// 解决第⼆问
	memset(dp, 0, sizeof dp);
	for (int j = 1; j <= V; j++)
	{
		dp[j] = -1;
	}
	for (int i = 1; i <= n; i++)
	{
		for (int j = V; j >= v[i]; j--)
		{
			if (dp[j - v[i]] != -1)
				dp[j] = max(dp[j], dp[j - v[i]] + w[i]);
		}
	}
	
	cout << (dp[V] == -1 ? 0 : dp[V]) << endl;
	return 0;
}

  • 26
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-元清-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值