二叉树的了解

本文详细介绍了二叉树的基础概念、结构特点,包括树的表示方法,以及特殊类型的二叉树如满二叉树和完全二叉树。重点讲解了二叉树的顺序结构、堆的概念与结构,涉及堆的插入、删除操作和堆向下调整算法,以及创建堆的时间复杂度分析。
摘要由CSDN通过智能技术生成

树的概念和结构

树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因

为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
1.有一个特殊的结点,称为根结点,根节点没有前驱结点
2.除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。
3.因此,树是递归定义的。
树形结构中,子树之间不能有交集,否则就不是树形
1.子树不相交
2.每个节点有且仅有一个父节点
3.一个有N个节点的树有N-1个边

看看树的夕阳
在这里插入图片描述

树的相关概念

概念的介绍图

1.节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6

相对的E的为2
2.叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
度为0的节点也是节点,计算时不要忽略
3.非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点
4.双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点相对
5.孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点相对
6.兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
7.树的度:一棵树中,最大的节点的度称为树的度(最大度); 如上图:树的度为6
8.节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
9.树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
10.堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
11.节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先相对
12.子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙相对
13.森林:由m(m>0)棵互不相交的树的集合称为森林;

树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。左孩子右兄弟

二叉树的概念及结构

概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

1. 二叉树不存在度大于2的结点
3. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

二叉树是由以下情况复合而成:

以上情况一定出现在二叉树中

特殊二叉树

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。

很明显不用图示
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
需要注意一些特殊情况不是完全二叉树
在这里插入图片描述

二叉树的性质

  1. 若规定根节点的层数为1,则一棵非空二叉树的第n层上最多有 **2^(n-1)**个结点.

  2. 若规定根节点的层数为1,则深度为n的二叉树的最大结点数是**(2^n-1)** .(等比数列和公式:且首项为1,公比为2)

  3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有 n0=n2 +1

  4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= log2(n+1). (ps: 是log以2为底,n+1为对数)由节点与深度公式2^h-1=n

  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

  6. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点

  7. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子

  8. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

一般使用蓝色
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。

二叉树的顺序结构和实现

二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结

构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。(普通二叉树不能使用堆,完全二叉树可以使用堆

观察是否可以使用堆

堆的概念和结构

如果有一个关键码的集合K = { , , ,…, },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。
满足上述两个条件

堆的实现

堆向下调整算法

1.现在我们给出一个数组,逻辑上看做一颗完全二叉树。
2.我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。
3.向下调整算法有一个前提:左右子树必须是一个堆,才能调整。(左右子树必须是已经确定的目标堆

堆的建立

  1. 一个数组,这个数组逻辑上可以看做一颗完全二叉树根据子节点与父节点的关系
  2. 从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

?注意:将每次调整时从最后一个

创建堆的时间复杂度

创建堆的方法是将数组元素一个一个输入堆中。
在这里插入图片描述
因此:建堆的时间复杂度为O(N)。

堆的插入

将未知元素插到尾部,然后再进行向上调整算法,直到形成目标堆。

向上调整

堆的删除

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。
1.将堆顶元素中最后一个元素进行交换
2.删除堆的最后一个元素
3.将堆顶元素向下调整到满足堆的特性为止

4。删除中间元素

堆代码的实现

重点注意

一般在下标从0开始:

父节点=(子节点-1)/2
左子节点=父节点*2+1
右子节点=父节点*2+2

节点数关系

  1. 若规定根节点的层数为1,则一棵非空二叉树的第n层上最多有 **2^(n-1)**个结点.

  2. 若规定根节点的层数为1,则深度为n的二叉树的最大结点数是**(2^n-1)** .(等比数列和公式:且首项为1,公比为2)

  3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有 n0=n2 +1

  4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= log2(n+1). (ps: 是log以2为底,n+1为对数)由节点与深度公式2^h-1=n

  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

  6. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点

  7. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子

  8. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值