2023年C题题目分析与数模过程复盘

2023数模国赛C题分析+心得(菜鸡版)


👉😅 整体复盘

备赛

国赛也过去了一个礼拜,其实早就想写点什么,无奈第一周尊嘟很忙(提到这我就要提一嘴学校的nt签到机制,不能逃课,这一周上的课比我之前一个月上的课还多🙄🙄🙄)。不管怎样,finally,在队友大美的催促下,我打算写点东西,来记录我们的参赛经历,也是和大家一起探讨学习。
暑期备赛两个月,大体分为三个part。

  1. 第一个阶段学校数模协会开课,讲一些建模方面的基础,讲的东西无论从应用层面还是科研角度,都是一些有用的方法及模型。讲课水平暂且先不提,内容对于大一同学可能难度稍大😫,大二学了概率论与数理统计,或者每个专业学了对应专业课可能会有所帮助。这一part挺痛苦的,如果你想听听清风建模,那也是讲的极好的,不过我更推荐这一个阶段找些建模书籍,对建模体系有个大致了解,再通过网课细致学习,二者相辅相成。
  2. 第二个阶段就是做案例,根据我们数模小队的特性,我们对赛题主要考虑的是c题,所以我们尽可能的找到往年的C题(专科组如果有相似的也可以看看,起点多低都不算低),分析他们的思路,融入自己的思考,这不仅是培养建模思维的过程,也是与队友磨合的好机会。

比较惋惜,觉得我们这一个环节做的不是特别好,暑假大家都各自忙着,聚在一起交流的机会不多,到了后面就是疲于赶作业,学到的东西本应该可以更多的

  1. 最后就是学校拟定题目或者找往年真题,同学们仿真练习,无论你前面环节完成度怎样,如果你只是以拿奖为导向,你做好最后这个环节说不定能逆天改命,取得不错的成绩,但是你真正能学到多少我就不想多说了,懂得都懂。还是一个点,队伍的参与度很重要,无论论文进展到什么程度,请保持队伍中至少两人的思路同步,数学建模不同于做项目,它时间短,强度大,不同细节处理方式不同,任务量有很大偏差,如果思路不同步,划水啊,质疑队友这种情况都有可能发生,最后影响队内和谐就不好了,竞赛还没打呢,队伍就散了。

备赛是一个漫长的过程,对队友不满,心里不平衡是很正常的,请多与队友沟通,如果实在觉得情况不对,跑吧,有条件坐个飞机飞也行,反正越快越好👉🤣。

赛中

比赛是第一天下午8点发题,前半个小时,我们数模小团队先一起看看题目和数据,再一起粗略的讨论,看看往年的哪些类型思路和想法可以用。然后建模手帅B(我)做数据处理,论文手大美写问题重述与问题背景,建模手小美和我仔细处理一些问题细节。数据处理差不多了,第一问思路也基本有了,第一天晚上大家都没有熬夜,11点多就休息了。

特喵的我第二天5点多就醒了,跑到比赛场地把前一天的尾巴处理掉,痛苦痛苦,实在痛苦。

第二天上午为了细化问题,我又在痛苦的处理数据,建模手小美已经在找第二问的论文了,找思路,这时候大美也差不多写完了,根据数据做一些图表的活交给大美,我开始写问题一的主干和结构。下午终于把结果跑出来了😫,小美第二问模型也找的差不多了,我们就一起做第一问的主干,小美用spss出结果,我写思路写代码画图,大美写问题分析,大概一直到晚上把第一问写完了。晚上我和小美讨论了第二问的模型(需要我自己写轮子跑结果,当时听到整个人就不好了👉😅),优化了一部分。
第三天上午,我就写第二问的代码写了一上午,最后把结果跑出来了,小美那边第三问的思路也差不多有了(太给力了👉😊,就是模型需要根据附件提取很多数据),下午我还是一直在处理数据,各品类的损耗率、预测成本、预测需求量、预测利润率,定价、预测成本加价定价……👉😅,把这些特征数据提取出来后,模型没有第二问复杂,所以代码也不困难,就是数据提取属实费了一番功夫,然后这个时间段小美把第二问以及第三问的问题分析和建模过程也给了,我结果出来后做了可视化,给了分析,完善了第三问数据准备的部分,大美把第一问留的一些小尾巴解决了,晚上大家开始看第四问,疯狂找文献,开拓思路,因为是开放性的题目,所以进展也还行,本来想当天晚上出一版摘要,但是论文手那边还没出前边的论文,于是我们决定边出论文边改文章(主要是问题分析和第一问)。当天晚上一切才明朗起来,心情比第二天好了不止一点,不过大美的活有点重,干到晚上1点多,我甚至和小美回寝室的时候还散了个步,大有曲中过尽松岭路,回首烟波十四桥的之势。
最后一天就是大家改论文,缝补细节,可能是工作流程不对,我们团队在这一环的效率有点低。最开始我和大美完成附录以及支撑材料的处理(真的繁琐)。由于大美没有过多的参与建模,对问题分析和文中一些结果分析的地方需要修改,我和小美这个时候就把摘要写了一版,大美在处理图表与排版和附录,至此我和小美就没啥活干了,不过大家还是聚在一起看看论文有哪些细节需要修改,中午没休息就一直改,到下午最后一part三个人对着论文仔细看,敲定最终的修改。然后我和小美就开摆了,留大美修改最终版。到了晚上就提交md5码,纸质版文件,电子版答卷,至此,给数模画上了圆满的句号(此圆满不论结果!!!)

👉😍题目分析+数据处理

这里是官方给的评阅要点
题目解读
下面是我们的分析思路
我们一拿到题目,觉得中间两问和22年的E题有点像,都是根据已有数据预测未来时期的补货量等信息,不同点是今年的题目给出了成本加成定价的信息以及更多的信息(损耗率、成本、需求量),在建立模型的时候需要花费一点心思,23年E题需要综合库存量等信息,在动态规划下功夫,比较考验编程能力。
拿到数据,重心应该放在附件二,流水数据信息给的很多,一般来说数据都会是有用的,它要么在后面的模型中做参数或者变量,要么就需要你对异常值进行处理,去除噪声数据。数据也比较多,附件二80多万组数据,常规软件根本无法处理,我是用的是matlab编程,一个程序也得跑5分钟左右,所以比较考验数据处理的能力,为了比较好的应用所给数据,你需要先提取归纳可能需要的特征数据(真的很痛😔😔😔),个人认为C题思路不难,提炼好数据拟合模型才是考察的重心。

很惭愧,我们观察到了打折商品和退货商品,将退货商品剔除,打折商品信息提取出折扣率,用于问题三模型建立。但是分析的比较笼统,数据处理这一part是很重要的,模型到后面都用的差不多(除非特别出彩、创新),否则数据处理的每个细节都可能是得奖的闪光点

  1. 问题一要求分析各品类和各单品的销售量分布与相关性,本文的策略是先分析品类的销售量分布及相关性,再探究单品的销售量分布与相关性因为我们觉得单品多且杂,先根据品类分析结果提取出特征单品分析销售量和相关性可能使结果更具有代表性对品类分析:根据日期提取出长期的销售量分布(每月为最小划分单位),根据支付时间提取出短期的销售量分布(每天各时刻),研究时序特征,季节性特征销售量趋势,再使用各种相关性分析方法进行关联分析,最后给出各方法的总结比对。对单品分析:因为单品本身就是从品类中特征提取出来的,我们觉得销售量很难具有代表性,而且各单品销售量规律各有不同,以一盖全也有失偏颇,所以我们没做销售量的讨论,转而将相关性进行了细致探讨。
  2. 问题二分为两个小问,第一个是分析销售总量与成本加成定价的关系,销售量是可统计的,以成本为因变量,利润(直接与成本挂钩)为自变量,建立利润率与总销售量的一元关系。第二个是建模预测未来七天的补货量和定价策略,以收益最大为目标,建立利润浮动模型。最后可以使用一些模型检验方法进行检验,或者用数据拟合判断模型稳健性
  3. 问题三其实也可以分为两个问题,第一个是在符合条件的销售单品中选择性质良好的单品集,第二个问题就是在满足需求与收益最大的条件下制订7月1号的补货计划和定价策略。对于第一问,尝试聚类分析挑选高需求量的单品进行分析,第二问制订成本、需求双导向定价策略,引入边际收益与边际成本来描述需求量对销售的印象,接着还是构造收益函数,求出使得收益最大时,各品类的补货量和定价。最后检验模型的灵敏度。
  4. 问题四是一个开放性的问题,旨在探究改进补货计划与定价策略时缺失的数据类型。如果你能言之有理,阐述清楚数据可以对模型做出怎样的改进或者是对于补货计划的制定有什么创新性的想法都可以提出。

其实可以参考盒马生鲜的一些经营策略相关论文,找找思路,当时最后我们才想到,就没有改(绝对不是因为论文快写完了,懒得修改👉🤣)

👉😊一点点小感悟

长篇大论也不想说了,来那一套跟我们高中啤酒肚校长一样😅。
参赛过程中精神状态挺迷惑的,走路创马路牙子、端着吃完的餐盘走到食堂门口,阿姨差点报警……
anyway,讲点感性的,我非常幸运遇到了大美和小美,她们不仅是数模参赛过程中的给力小子,在生活中也是我很要好的朋友。数模真的很累,支撑我走到最后的绝不是最后的一纸奖状(也有可能奖状也没有),而是过程中与队友意念合一;是可以共同为了一个faith付出我们的思考,倾注心血;是你在闹,她们会笑。这种精神上的契合无疑是久旱中的甘霖,远超出其他娱乐活动带给我的开心。

写到这差不多4000来字,感谢你们能看到这里。 论文以及支撑材料我放在gitee上托管咯,文件地址在这,欢迎大家讨论交流,也欢迎给我的仓库点个star😍。
另外加一句,笔者真的是才疏学浅🤣,对于数模也没有经验可言,这篇论文完全是和小伙伴们边玩边学做出来的结果,其纪念意义远大于竞赛参考意义,相关思路仅供参考😘,祝大家天天开心,学业进步,祝大美、小美越来越美腻。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值