本文主要介绍博主在以往开发过程中,对于不同业务所对应的 sql 写法进行归纳总结而来。进而分享给大家。
一、ORDER BY FIELD() 自定义排序逻辑
MySql 中的排序 ORDER BY 除了可以用 ASC 和 DESC,还可以通过 ORDER BY FIELD(str,str1,...) 自定义字符串/数字来实现排序。这里用 order_diy 表举例,结构以及表数据展示:
ORDER BY FIELD(str,str1,...) 自定义排序sql如下:
SELECT * from order_diy ORDER BY FIELD(title,'九阴真经',
'降龙十八掌','九阴白骨爪','双手互博','桃花岛主',
'全真内功心法','蛤蟆功','销魂掌','灵白山少主');
查询结果如下:
如上,我们设置自定义排序字段为 title 字段,然后将我们自定义的排序结果跟在 title 后面。
二、CASE 表达式
case when then else end表达式功能非常强大可以帮助我们解决 if elseif else 这种问题,这里继续用 order_diy 表举例,假如我们想在 order_diy 表加一列 level 列,根据money 判断大于60就是高级,大于30就是中级,其余显示低级,sql 如下:
SELECT *,
case when money > 60 then '高级'
when money > 30 then '中级'
else '低级' END level
from order_diy;
查询结果:
需要注意的就是 case when then 语句不匹配如果没有写 else end 会返回 null,影响数据展示。
三、EXISTS 用法
我猜大家在日常开发中,应该都对关键词 exists 用的比较少,估计使用 in 查询偏多。这里给大家介绍一下 exists 用法,引用官网文档:
可知 exists 后面是跟着一个子查询语句,它的作用是根据主查询的数据,每一行都放到子查询中做条件验证,根据验证结果(TRUE 或者 FALSE),TRUE的话该行数据就会保留,下面用 emp 表和 dept 表进行举例,表结构以及数据展示:
计入我们现在想找到 emp 表中 dept_name 与 dept表 中 dept_name 对应不上员工数据,sql 如下:
SELECT * from emp e where exists (
SELECT * from dept p where e.dept_id = p.dept_id
and e.dept_name != p.dept_name
)
查询结果:
我们通过 exists 语法将外层 emp 表全部数据 放到子查询中与一一与 dept 表全部数据进行比较,只要有一行记录返回true。画个图展示主查询所有记录与子查询交互如下:
- 第一条记录与子查询比较时,全部返回 false,所以第一行不展示。
- 第二行记录与子查询比较时,发现 销售部门 与 dept 表第二行 销售部 对应不上,返回 true,所以主查询该行记录会返回。
- 第二行以后记录执行结果同第一条。
四、GROUP_CONCAT(expr) 组连接函数
GROUP_CONCAT(expr) 组连接函数可以返回分组后指定字段的字符串连接形式,并且可以指定排序逻辑,以及连接字符串,默认为英文逗号连接。这里继续用 order_diy 表举例:sql 如下:
SELECT name, GROUP_CONCAT(title ORDER BY id desc SEPARATOR '-')
from order_diy GROUP BY name ORDER BY NULL;
查询结果:
如上我们通过 GROUP_CONCAT(title ORDER BY id desc SEPARATOR '-') 语句,指定分组连接 title 字段并按照 id 排序,设置连接字符串为 -。
五、自连接查询
自连接查询是 sql 语法里常用的一种写法,掌握了自连接的用法我们可以在 sql 层面轻松解决很多问题。这里用 tree 表举例,结构以及表数据展示:
tree 表中通过 pid 字段与 id 字段进行父子关联,假如现在有一个需求,我们想按照父子层级将 tree 表数据转换成 一级职位 二级职位 三级职位 三个列名进行展示,sql 如下:
SELECT t1.job_name '一级职位', t2.job_name '二级职位', t3.job_name '三级职位'
from tree t1 join tree t2 on t1.id = t2.pid left join tree t3 on t2.id = t3.pid
where t1.pid = 0;
结果如下:
我们通过 tree t1 join tree t2 on t1.id = t2.pid 自连接展示 一级职位 二级职位,再用 left join tree t3 on t2.id = t3.pid 自连接展示 二级职位 三级职位,最后通过where 条件 t1.pid = 0过滤掉非一级职位的展示,完成这个需求。
六、更新 emp 表和 dept 表关联数据
这里继续使用上文提到的 emp 表和 dept 表,数据如下:
可以看到上述 emp 表中 jack 的部门名称与 dept 表实际不符合,现在我们想将 jack 的部门名称更新成 dept 表的正确数据,sql 如下:
update emp, dept set emp.dept_name = dept.dept_name
where emp.dept_id = dept.dept_id;
查询结果:
我们可以直接关联 emp 表和 dept 表并设置关联条件,然后更新 emp 表的 dept_name 为 dept 表的 dept_name。
七、ORDER BY 空值 NULL 排序
ORDER BY 字句中可以跟我们要排序的字段名称,但是当字段中存在 null 值时,会对我们的排序结果造成影响。我们可以通过 ORDER BY IF(ISNULL(title), 1, 0) 语法将 null 值转换成0或1,来达到将 null 值放到前面还是后面进行排序的效果。这里继续用 order_diy 表举例,sql 如下:
SELECT * FROM order_diy ORDER BY IF(ISNULL(title), 0, 1), money;
查询结果:
八、with rollup 分组统计数据的基础上再进行统计汇总
MySql 中可以使用 with rollup 在分组统计数据的基础上再进行统计汇总,即用来得到 group by 的汇总信息。这里继续用order_diy 表举例,sql 如下:
SELECT name, SUM(money) as money
FROM order_diy GROUP BY name WITH ROLLUP;
查询结果:
可以看到通过 GROUP BY name WITH ROLLUP 语句,查询结果最后一列显示了分组统计的汇总结果。但是 name 字段最后显示为 null,我们可以通过 coalesce(val1, val2, ...) 函数,这个函数会返回参数列表中的第一个非空参数。
SELECT coalesce(name, '总金额') name, SUM(money) as money
FROM order_diy GROUP BY name WITH ROLLUP;
查询结果:
九、with as 提取临时表别名
with as 语法需要 MySql 8.0以上版本,它有一个别名叫做 CTE,官方对它的说明如下
公用表表达式 (CTE) 是一个命名的临时结果集,它存在于单个语句的范围内,稍后可以在该语句中引用,可以多次引用。
它的作用主要是提取子查询,方便后续共用,更多情况下会用在数据分析的场景上。
如果一整句查询中多个子查询都需要使用同一个子查询的结果,那么就可以用 with as,将共用的子查询提取出来,加个别名。后面查询语句可以直接用,对于大量复杂的SQL语句起到了很好的优化作用。这里继续用 order_diy 表举例,这里使用 with as 给出 sql 如下:
-- 使用 with as
with t1 as (SELECT * from order_diy where money > 30),
t2 as (SELECT * from order_diy where money > 60)
SELECT * from t1
where t1.id not in (SELECT id from t2) and t1.name = '周伯通';
查询结果:
这个 sql 查询了 order_diy 表中 money 大于30且小于等于60之间并且 name 是周伯通的记录。可以看到使用 CTE 语法后,sql写起来会简洁很多。
10、存在就更新,不存在就插入
MySql 中通过on duplicate key update语法来实现存在就更新,不存在就插入的逻辑。插入或者更新时,它会根据表中主键索引或者唯一索引进行判断,如果主键索引或者唯一索引有冲突,就会执行on duplicate key update后面的赋值语句。 这里通过 news 表举例,表结构和说数据展示,其中 news_code 字段有唯一索引:
添加sql:
-- 第一次执行添加语句
INSERT INTO `news` (`news_title`, `news_auth`, `news_code`)
VALUES ('新闻3', '小花', 'wx-0003')
on duplicate key update news_title = '新闻3';
-- 第二次执行修改语句
INSERT INTO `news` (`news_title`, `news_auth`, `news_code`)
VALUES ('新闻4', '小花', 'wx-0003')
on duplicate key update news_title = '新闻4';
结果如下:
让你的SQL语句更加优雅高效:
- 1️⃣插入数据时的SQL优化
- 2️⃣主键优化,同时会讲到主键的设计原则
- 3️⃣order by 语句的优化
- 4️⃣group by 语句的优化
1️⃣ Insert 优化
提到插入数据,我们自然是通过Insert语句插入数据,而我们在往数据库中插入数据的时候,通常就是一条一条Insert语句去执行,而插入多条数据呢,我们可以有哪些实现方式呢?
⛏批量插入
因为每一次Insert都需要与数据库建立连接和网络传输,因此对于多条数据,批量插入的效率优于普通的一条插入。
同时,批量插入的数据也不要太多,最好维持在500-1000条,如果有超过这么多条的,最好是分多次批量插入。
⚒ 手动提交事务
在MySQL中,事务提交方式默认为自动提交,也就是说一条Insert语句后,就会自动提交事务,再次执行一条Insert就会再次开启事务,然后又提交,这样就会有事务频繁的开启与提交,因此最好是在插入之前开启事务,然后所有插入结束后提交事务。
start transaction; 开始事务
insert ……; 插入数据1
insert ……; 插入数据2
insert ……; 插入数据3
commit; 提交事务
主键顺序插入
主键插入,要么乱序插入,要么顺序插入,实际上顺序插入的性能更高,这取决于MySQL数据组织结构的,我们在后面的主键优化中会详细讲解。
顺序插入是指ID以升序的方式进行插入,比如1,2,3,4,5,6……
如果现在我们要导入百万级的数据,此时我们使用Insert语句的性能就不高了,我们应该怎么做呢?
⚔ 大批量插入数据
如果需要一次性插入大批量数据,使用Insert语句插入的性能很低,此时我们可以使用MySQL数据库提供给我们的指令load进行插入,例如:
而我们如何使用这个功能呢,它有三部曲:
- 客户端连接服务端的时候,加上参数--local-infile
mysql --local-infile -u root -proot
- 设置全局参数local_infile = 1,开启从本机加载文件导入数据的开关
set global local_infile = 1
- 执行load指令,把准备好的数据加载到表结构中
load data local infile `/root/sql1.log` into table `tb_user` fields terminated by ',' lines terminated by '\n';
2️⃣ 主键优化
在讲解插入数据时的优化的时候,我们有提到主键插入的时候顺序插入的性能高于乱序插入的性能,至于为什么呢,我们将在这一小节详细讲解它的底层原理:
在此之前,我们首先需要了解InnoDB存储引擎的数据组织方式:在InnoDB存储引擎中,表数据是根据主键顺序组织存放的,这种存储方式的表称为索引组织表
在前文讲索引的时候我们有讲解过聚集索引,它的选取规则是在有主键的情况下,默认选择主键为聚集索引,也就是说,行数据存储在主键构成的索引的B+Tree中,如下图所示:
而索引构成的B+Tree在叶子结点顺序存放,也就是说:表数据是根据主键顺序组织存放的
此处,每一个结点,不管是分支结点还是叶子结点都是存储在一个页中,也就是我们之前提到的逻辑存储结构:
那么插入一条数据,在逻辑存储结构中是什么样的流程呢:
页分裂
顺序插入
对于顺序插入,依次去写数据即可,如果一页的空间不足就去申请下一页的空间,并用双向指针连接,这就是主键顺序插入
主键顺序插入基本上就是如果当前的最后一页有空间则填入,如果空间不足就放在下一页的空间使用双向链表连接保证它的有序
乱序插入
现在有两页写满了的数据:
如果我们不是顺序插入,此时插入了一条主键为50的数据,此时就会出现页分裂:找到第一页的后半部分23,47申请新的一页放进去,然后把50放在新的一页的最后:
然后重新排列三页的位置:1#page <==> 3#page <==> 2#page
所以,其实我们可以发现,相较于顺序插入,乱序插入的过程更加复杂、繁琐,这种现象我们称之为页分裂,因此在插入的时候最好是按照主键顺序插入
页合并
有页分裂,自然也有页合并,否则,对于固定大小的一页来说,如果一页的空间利用率不高,将会造成冗余的内存占用,那么什么时候会出现业合并呢?
首先谈谈删除记录时,页中数据的变化,其实它有点类似于逻辑删除,在删除一条记录的时候,在实际上没有被物理删除,只是记录了被标记为删除,并且它的空间被允许其他记录声明使用,但是什么时候会被真正物理删除了,那就是业合并的时候:
当页中的记录达到MERGE_THRESHOLD(默认为50%) 的时候,InnoDB存储引擎会开始寻找两边的页,是否能够达到合并的条件,如果能就会产生业合并,以达到优化空间的目的:
对于这种情况:
第二页的数据删除超过了一半,而在比对的时候,与前一页无法合并,但是能和第二页合并,于是就合并了两页的数据:
其中MERGE_THRESHOLD(默认为50%) 是可以自行设置的
主键设计原则
有了上面的前置知识,我们能总结出四点主键设计的原则,帮助我们在设计主键时避坑
尽量降低主键的长度
对于一张表来说,主键索引只有一个,但是会有很多个二级索引,如果说索引的长度比较长,二级索引比较多,那么在二级索引的叶子结点处会占用大量的磁盘空间,而且在搜索的时候会耗费更多的磁盘IO
尽量顺序插入
插入数据的时候尽量选择顺序插入,并选用AUTO_INCREMENT这种自增主键,这个我们在页分裂中有详细讲解
尽量不要使用自然主键
尽量不要使用UUID做主键或者其他自然主键,比如身份证号这种,我们每次生成的UUID都是无序的,那么就会导致在插入的时候产生乱序的插入,同样,UUID也比较长
尽量不要修改主键
业务操作的时候,尽量少修改主键,因为会伴随着索引结构的修改,不过在一般的业务里面,也没人改主键吧
3️⃣ Order by 优化
对于MySQL中的排序有两种方式,那可能有朋友就疑惑了,那排序不就Order by嘛,哪来的两种方式,实际上这里的两种方式指的是底层实现的两种方式:
Using filesort
通过表的索引或者全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer完成排序操作,所有不是通过索引直接返回排序结果的排序都叫FileSort排序
Using index
通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,不需要额外排序,操作效率高。
我们不妨来猜一猜一下几组情况的索引使用情况,已知存在联合索引age,phone,问下面哪些SQL查询使用到了索引,哪些没有使用到:
- EXPLAIN SELECT id,age,phone from tb_user order by age
- EXPLAIN SELECT id,age,phone from tb_user order by age,phone
- EXPLAIN SELECT id,age,phone from tb_user order by age desc ,phone desc
- EXPLAIN SELECT id,age,phone from tb_user order by phone,age
- EXPLAIN SELECT id,age,phone from tb_user order by age asc ,phone desc
第一个,按照最左前缀法则,联合索引的最左边是age,因此使用了索引排序
第二个,使用联合索引进行排序,毋庸置疑
第三个,如果二者都查倒序排序,此时尽管还是使用了索引,但是多了一个Backward index scan,也就是说从索引的最后面开始扫描
我们只需要从最后那个叶子结点往回扫描即可
第四个,如果说联合索引的顺序反了,我们在讲最左前缀法则的时候,尽管顺序反了,索引也是能够使用了,是因为那个是 where 条件,没有先后顺序,只有书写顺序,但是对于order,书写顺序就代表了先后顺序,先对哪个进行排序。
第五个,在创建索引的时候,默认按照升序往后走,也就是说先按照age进行升序排列,再按照phone进行升序排列,而此处查找的时候,按照age升序排序,按照phone降序排序,因此就会不完全使用索引。
这张图其实能帮助我们很好的理解为什么不能一个升序一个降序,索引无法按照这个去排列
这里也说了,在创建索引的时候我们默认按照升序排序,那我们按照降序排序创建索引应该怎么创建呢? 其实只需要在字段的后面加上asc / desc即可:
CREATE INDEX idx_user_age_phone_ad on tb_user(age asc, phone desc)
在创建结束后,我们再次去查询,得到的就是使用索引排序了:
总结
- 根据排序字段建立合适的索引,多字段排序的时候,也遵循最左前缀法则。
- 尽量使用覆盖索引,减少回表查询
- 多字段排序的时候,注意联合索引在创建时的规则
- 如果不可避免出现FileSort,我们可以适当增加排序缓冲区的大小sort_buffer_size,因为如果缓冲区满了,它就会去磁盘空间进行排序,效率很低
4️⃣ Group by 优化
与Order by相比,其实二者很像,因为二者都是需要排序,但是Group by多了一个分组
它使用索引的条件是,也就是按照索引进行分组的时候,但是有一个情况是和联合索引有一些出入的:
对于这种情况,我们通过Explain分析可以发现,这个居然使用到了索引,原因是这里有使用到profession作为查询条件,然后根据年龄进行分组
总结
到这里,本文所分享的10个高级sql写法就全部介绍完了,希望对大家日常开发 sql 编写有所帮助,喜欢的朋友们可以点赞加关注。