笔记,前缀和与差分 算法基础//差分二维**

/前缀和二维

int main(){

    int a[100][100],s[100][100];//可以更改,

    for(int i=1;i<100;i++)

        for(int j=1;j<100;j++)//输入矩阵a[0][0]空出来

            scanf("%d",&a[i][j]);

    for(int i=1;i<100;i++)

        for(int j=1;j<100;j++)

            s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];

    //输出区间(l1,r2) (l2,r2)之间的面积(抽象)

    int l1,l2,r1,r2;

    scanf("%d%d%d%d",&l1,&l2,&r1,&r2);

    int ans=0;

    ans=s[l2][r2]-s[l1-1][r2]-s[l2][r1-1]+s[l1-1][r1-1];//求差值

    printf("%d",ans);

}//

//差分一维二维

int a[100], b[100];

void insert(int l,int r,int c){

    b[l]+=c;

    b[r+1]-=c;

}

int main(){

   

    for(int i=1;i<100;i++){

        cin>>a[i];

        insert(i,i,a[i]);

    }

    int l,r,c;//让a数组的l和r段每一个数加上c;

    insert(l,r,c);

    //更新b的前缀和数组a;

    for(int i=1;i<100;i++)

        a[i]=a[i-1]+b[i];

    for(int i=0;i<100;i++)

        cout<<a[i]<<"";

    return 0;

}

//二维

void insert(int x1, int y1, int x2, int y2, int c) {

    b[x1][y1] += c;

    b[x2 + 1][y1] -= c;

    b[x1][y2 + 1] -= c;

    b[x2 + 1][y2 + 1] += c;

}

int main() {

    cin >> n >> m >> q;

    //读入并构建

    for (int i = 1; i <= n; i++)

        for (int j = 1; j <= m; j++)

            cin >> a[i][j], insert(i, j, i, j, a[i][j]);//得到b[][];

    //q次区域变化

        int x1, y1, x2, y2, c;

        cin >> x1 >> y1 >> x2 >> y2 >> c;

        insert(x1, y1, x2, y2, c);

    //还原二维数组

    for (int i = 1; i <= n; i++) {

        for (int j = 1; j <= m; j++) {//二维前缀和公式

            a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + b[i][j];//更新a数组;

            printf("%d ", a[i][j]);

        }

        printf("\n");

    }

    return 0;

}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值