【错题集-编程题】字母收集(动态规划 - 路径问题)

本文讲述了如何使用动态规划解决牛客网上的一道题目,涉及状态转移方程、字符数组处理和边界条件的考虑。作者反思了初始时对矩阵dp问题的误解,强调了正确初始化的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

牛客对应链接:字母收集_牛客题霸_牛客网 (nowcoder.com)


一、分析题目

基础路径问题的 dp 模型。

  • 状态表示:dp[i][j]:到达 i, j 位置的时候,最多的分数是多少。(返回 dp[n][m])
  • 状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + t
  • 遍历顺序:从上往下,从左往右。

注意:小心边界情况和数组类型的设定(这里的 g 里面是字符,要用 char,dp 里面存的是整型,要用 int)。


二、代码

#include <iostream>

using namespace std;

const int N = 510;

char g[N][N];
int dp[N][N];
int n, m;

int main()
{
    cin >> m >> n;
    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j <= m; j++)
        {
            cin >> g[i][j];
        }
    }

    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j <= m; j++)
        {
            int t = 0;
            if(g[i][j] == 'l') t = 4;
            else if(g[i][j] == 'o') t = 3;
            else if(g[i][j] == 'v') t = 2;
            else if(g[i][j] == 'e') t = 1;
            dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + t;
        }
    }

    cout << dp[n][m] << endl;

    return 0;
}

三、反思与改进

最近一做到矩阵的题目就想到 dfs,好在后面反应过来这题就是很普通的 dp 路径问题,不过卡在了初始化那一块,刚开始想着先把第一行和第一列进行初始化,后面想想不对,除了 dp[0][0] 可以确定,其它的都不一定是其本身的值。于是,只对下标 dp[0][0] 进行了初始化,但却忽略了后面递推关系会用到第一行和第一列的值。其实只需要把 i=0 和 j=0 空出来,从 i=1 和 j=1 开始,一直到 n 和 m 结束,去读入数据和遍历数组,即可解决这个问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炫酷的伊莉娜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值