P12130 [蓝桥杯 2025 省 B] 移动距离
https://www.luogu.com.cn/problem/P12130
题目背景
本站蓝桥杯 2025 省赛测试数据均为洛谷自造,与官方数据可能存在差异,仅供学习参考。
题目描述
小明初始在二维平面的原点,他想前往坐标 ( 233 , 666 ) (233, 666) (233,666)。在移动过程中,他只能采用以下两种移动方式,并且这两种移动方式可以交替、不限次数地使用:
- 水平向右移动,即沿着 x x x 轴正方向移动一定的距离。
- 沿着一个圆心在原点 ( 0 , 0 ) (0, 0) (0,0)、以他当前位置到原点的距离为半径的圆的圆周移动,移动方向不限(即顺时针或逆时针移动不限)。
在这种条件下,他到达目的地最少移动多少单位距离?你只需要输出答案四舍五入到整数的结果。
输入格式
无
输出格式
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只需要编写一个程序输出这个整数,输出多余的内容将无法得分。
AC Code
#include <bits/stdc++.h>
using namespace std;
int main(){
ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
cout << "1576";
return 0;
}
P12132 [蓝桥杯 2025 省 B] 可分解的正整数
https://www.luogu.com.cn/problem/P12132
题目背景
本站蓝桥杯 2025 省赛测试数据均为洛谷自造,与官方数据可能存在差异,仅供学习参考。
题目描述
定义一种特殊的整数序列,这种序列由连续递增的整数组成,并满足以下条件:
- 序列长度至少为 3 3 3。
- 序列中的数字是连续递增的整数(即相邻元素之差为 1 1 1),可以包括正整数、负整数或 0 0 0。
例如, [ 1 , 2 , 3 ] [1, 2, 3] [1,2,3]、 [ 4 , 5 , 6 , 7 ] [4, 5, 6, 7] [4,5,6,7] 和 [ − 1 , 0 , 1 ] [−1, 0, 1] [−1,0,1] 是符合条件的序列,而 [ 1 , 2 ] [1, 2] [1,2](长度不足)和 [ 1 , 2 , 4 ] [1, 2, 4] [1,2,4](不连续)不符合要求。
现给定一组包含 N N N 个正整数的数据 A 1 , A 2 , … , A N A_1, A_2, \dots , A_N A1,A2,…,AN。如果某个 A i A_i Ai 能够表示为符合上述条件的连续整数序列中所有元素的和,则称 A i A_i Ai 是可分解的。
请你统计这组数据中可分解的正整数的数量。
输入格式
输入的第一行包含一个正整数 N N N,表示数据的个数。
第二行包含 N N N 个正整数 A 1 , A 2 , … , A N A_1, A_2, \dots , A_N A1,A2,…,AN,表示需要判断是否可分解的正整数序列。
输出格式
输出一个整数,表示给定数据中可分解的正整数的数量。
输入输出样例 #1
输入 #1
3
3 6 15
输出 #1
3
说明/提示
样例说明
- A i = 3 A_i = 3 Ai=3 是可分解的,因为 [ 0 , 1 , 2 ] [0, 1, 2] [0,1,2] 的和为 0 + 1 + 2 = 3 0 + 1 + 2 = 3 0+1+2=3。
- A i = 6 A_i = 6 Ai=6 是可分解的,因为 [ 1 , 2 , 3 ] [1, 2, 3] [1,2,3] 的和为 1 + 2 + 3 = 6 1 + 2 + 3 = 6 1+2+3=6。
- A i = 15 A_i = 15 Ai=15 是可分解的,因为 [ 4 , 5 , 6 ] [4, 5, 6] [4,5,6] 的和为 4 + 5 + 6 = 15 4 + 5 + 6 = 15 4+5+6=15。
所以可分解的正整数的数量为 3 3 3。
评测用例规模与约定
- 对于 30 % 30\% 30% 的评测用例, 1 ≤ N ≤ 100 1 \leq N \leq 100 1≤N≤100, 1 ≤ A i ≤ 100 1 \leq A_i \leq 100 1≤Ai≤100。
- 对于 100 % 100\% 100% 的评测用例, 1 ≤ N ≤ 1 0 5 1 \leq N \leq 10^5 1≤N≤105, 1 ≤ A i ≤ 1 0 9 1 \leq A_i \leq 10^9 1≤Ai≤109。
思路
只要不是1都可以分解,[-(x-1),-(x-2),…,0,…x-1,x-2,x]
AC Code
#include <bits/stdc++.h>
using namespace std;
int main(){
ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
int n;
cin >> n;
int res = 0;
for(int i=0;i<n;i++){
int num;
cin >> num;
if(num>1){
res++;
}
}
cout << res;
return 0;
}
P12133 [蓝桥杯 2025 省 B] 产值调整
https://www.luogu.com.cn/problem/P12133
题目描述
偏远的小镇上,三兄弟共同经营着一家小型矿业公司“兄弟矿业”。公司旗下有三座矿山:金矿、银矿和铜矿,它们的初始产值分别用非负整数 A A A、 B B B 和 C C C 表示。这些矿山的产出是小镇经济的核心,支撑着三兄弟和许多矿工家庭的生计。
然而,各矿山的产值波动剧烈,有时金矿收益高而银矿、铜矿低迷,有时则相反。这种不稳定性让公司收入难以预测,也常引发兄弟间的争执。为了稳定经营,三兄弟设计了一个公平的产值调整策略,每年执行一次,每次调整时,将根据当前的产值 A A A、 B B B、 C C C,计算新产值:
- 金矿新产值: A ′ = ⌊ B + C 2 ⌋ A'=\lfloor \dfrac{B+C}{2} \rfloor A′=⌊2B+C⌋;
- 银矿新产值: B ′ = ⌊ A + C 2 ⌋ B'=\lfloor \dfrac{A+C}{2} \rfloor B′=⌊2A+C⌋;
- 铜矿新产值: C ′ = ⌊ A + B 2 ⌋ C'=\lfloor \dfrac{A+B}{2} \rfloor C′=⌊2A+B⌋;
其中, ⌊ ⌋ \lfloor \rfloor ⌊⌋ 表示向下取整。例如, ⌊ 3.7 ⌋ = 3 \lfloor 3.7\rfloor = 3 ⌊3.7⌋=3, ⌊ 5.2 ⌋ = 5 \lfloor 5.2\rfloor = 5 ⌊5.2⌋=5。
计算出 A ′ A' A′、 B ′ B' B′、 C ′ C' C′ 后,同时更新: A A A 变为 A ′ A' A′, B B B 变为 B ′ B' B′, C C C 变为 C ′ C' C′,作为下一年调整的基础。
三兄弟认为这个方法能平衡产值波动,于是计划连续执行 K K K 次调整。现在,请你帮他们计算,经过 K K K 次调整后,金矿、银矿和铜矿的产值分别是多少。
输入格式
输入的第一行包含一个整数 T T T,表示测试用例的数量。
接下来的 T T T 行,每行包含四个整数 A , B , C , K A,B,C,K A,B,C,K,分别表示金矿、银矿和铜矿的初始产值,以及需要执行的调整次数。
输出格式
对于每个测试用例,输出一行,包含三个整数,表示经过 K K K 次调整后金矿、银矿和铜矿的产值,用空格分隔。
输入输出样例 #1
输入 #1
2
10 20 30 1
5 5 5 3
输出 #1
25 20 15
5 5 5
说明/提示
评测用例规模与约定
- 对于 30 % 30\% 30% 的评测用例, 1 ≤ T ≤ 100 1 \leq T \leq 100 1≤T≤100, 1 ≤ A , B , C , K ≤ 1 0 5 1 \leq A, B, C, K \leq 10^5 1≤A,B,C,K≤105。
- 对于 100 % 100\% 100% 的评测用例, 1 ≤ T ≤ 1 0 5 1 \leq T \leq 10^5 1≤T≤105, 1 ≤ A , B , C , K ≤ 1 0 9 1 \leq A, B, C, K \leq 10^9 1≤A,B,C,K≤109。
思路
注意当a == b == c时需要直接break,因为已经收敛,若不break将会超时,只有30%的分数。
AC Code
#include <bits/stdc++.h>
using namespace std;
int main(){
ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
int t;
cin >> t;
while(t--){
int a,b,c,k;
cin >> a >> b >> c >> k;
for(int i=0;i<k;i++){
if(a == b && b == c){
break;
}
int t1 = a,t2 = b,t3 = c;
a = (t2+t3)/2;
b = (t1+t3)/2;
c = (t1+t2)/2;
}
cout << a << ' ' << b << ' ' << c << endl;
}
return 0;
}