自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

跟我加入白帽大家庭,共捍亿万互联网用户安全!

本喵纵向以网络空间安全领域为主,横向以前端,后端,数据安全,云计算安全,AIGC安全,数据结构与算法,网络与信息通信等领域为辅;旨在带领宝子们领略科技前沿阵地以及捍卫亿万互联网用户安全!

  • 博客(275)
  • 收藏
  • 关注

原创 《模型持久化实战:掌握PyTorch保存与加载的核心技巧与最佳实践》

文章详解了如何保存与加载完整的训练状态(包括优化器状态、轮次等),以实现精确的训练断点续练。针对部署环节,重点探讨了跨设备加载模型的兼容性处理,如CPU与GPU间转换及多GPU训练模型的加载技巧。同时,深入分析了模型转换与兼容性核心问题,包括应对PyTorch版本差异的策略,以及将模型转换为TorchScript格式以实现独立于Python环境的部署。文章还汇总了最佳实践与常见问题解决方案,例如处理Missing key(s) in state_dict报错和CUDA内存溢出等典型难题。最后,通过一个图像分

2026-02-09 22:00:50 611

原创 《PyTorch模型部署终极指南:从TorchScript导出、LibTorch/ONNX Runtime本地推理到TorchServe云端服务与性能优化全解析》

前者涵盖LibTorch(C++ API)与ONNX Runtime等高效推理方案;后者则详解了TorchServe官方框架与基于FastAPI构建REST API等灵活的服务化方案。针对性能瓶颈,文章进一步分享了模型量化、TensorRT加速等核心优化技巧及其代码示例

2026-02-09 13:51:38 457

原创 《解锁计算机视觉:深度解析 PyTorch torchvision 核心与进阶技巧》

章首先回顾前期基础,随后系统剖析 torchvision 的核心组件:在 models 部分,详细列举了常用预训练模型(如 ResNet、VGG、AlexNet 等),这些模型支持迁移学习,可快速构建高效视觉架构;datasets 组件集成了多种标准数据集(包括 CIFAR-10、ImageNet、MNIST 等),简化数据加载与预处理流程;transforms 模块则分类介绍图像变换方法(如裁剪、翻转、归一化),用于数据增强和输入标准化。通过一个完整的图像分类实战示例,文章逐步演示了数据准备(包括数据加载

2026-02-08 22:00:25 807

原创 《一文搞懂PyTorch优化器:SGD/Adam原理、使用流程与实战调优指南》

文章开篇阐明优化器在模型训练中的必要性及其核心作用,并概述常见的优化器类型。继而,文章深入剖析 PyTorch torch.optim模块的核心 API 与基本使用流程,详解了优化器对象初始化、梯度清零、反向传播与参数更新等关键方法。核心部分聚焦于SGD(随机梯度下降)与 Adam(自适应矩估计)两大常用优化器,逐一拆解其数学原理、核心超参数(如学习率、动量、衰减项)及各自的算法特点与适用场景。此外,文章进阶探讨了学习率动态调度、模型参数分组差异化优化、梯度裁剪等高级技巧,以提升训练稳定性和模型性能。最后,

2026-02-08 11:29:22 914

原创 《Transformer模型PyTorch实现全攻略:架构拆解、代码示例与优化技巧》

文章以清晰的步骤化结构展开:首先指导读者导入必要的PyTorch库与模块,奠定开发基础;接着深入拆解Transformer的核心组件,包括多头注意力机制、位置前馈网络与位置编码的原理与实现,并逐一提供可运行的代码示例。在此基础上,文章详细讲解了如何将这些基础模块组合为编码器层与解码器层,进而构建完整的Transformer模型架构,同时提供了详细的模型参数初始化说明。文章不仅停留在模型构建层面,更进一步演示了模型的训练流程与评估方法,包括损失函数选择、优化器配置以及性能评估指标,最后对代码优化与模型评估结果

2026-02-07 22:18:13 514

原创 《超越RNN:Transformer核心思想、架构详解与PyTorch代码实现》突出核心与突破类

核心内容首先对比其出现前RNN等模型存在的长程依赖捕捉困难与并行计算效率低下等瓶颈,进而引出Transformer的突破性设计。文章随后详尽拆解了其编码器-解码器架构,并聚焦于最核心的自注意力与多头注意力机制,阐明其如何通过计算词元间关联权重实现上下文动态建模。同时,文章阐释了位置编码如何注入序列顺序信息。进一步,文章剖析了模型中的前馈神经网络、残差连接与层归一化等关键组件及其协同作用。在明确其并行化优势与强大表征能力后,文章列举了其在机器翻译、文本生成等领域的广泛应用。

2026-02-07 15:06:09 776 1

原创 《PyTorch 视觉数据增强实战:详解Compose组合变换与自定义方法,有效提升模型泛化能力》

数据预处理(统一格式与归一化)、数据增强(通过随机变换扩充数据集以提升模型泛化能力)​ 与框架灵活性。主体部分详细分类讲解了基础变换操作(如 ToTensor, Resize, Normalize, CenterCrop)与数据增强操作(如 RandomCrop, RandomHorizontalFlip, RandomRotation, ColorJitter)的关键函数与示例代码。进而,文章深入介绍了如何利用 transforms.Compose​ 将多个变换流水线式组合,并指导读者编写自定义转换函数以

2026-02-06 22:23:44 736

原创 《掌握PyTorch数据加载:内置数据集使用、Dataset/DataLoader自定义与完整代码示例》

文章首先介绍了 PyTorch 内置数据集的丰富生态,着重说明 torchvision​ 与 torchtext​ 库如何为计算机视觉和自然语言处理任务提供开箱即用的标准数据集。接着,文章深入解析了 torch.utils.data.Dataset​ 这一核心抽象类的概念与用法,并辅以具体代码示例,帮助读者理解如何通过继承该类来封装任意形式的数据。随后,文章详细阐述了 torch.utils.data.DataLoader​ 的作用,它通过封装Dataset、支持批量加载、数据打乱与多进程并行,构建了模型训

2026-02-06 12:44:15 801

原创 《PyTorch RNN实战全解析:从隐状态理解到序列建模的完整代码实现》

文章开篇从RNN的基本结构入手,重点阐释了隐状态(Hidden State)​ 作为网络记忆单元的关键作用,并详解了其处理序列数据的时序工作机制。随后,文章转向实战,逐步演示了如何使用PyTorch搭建一个完整的RNN模型:从导入必要的库、定义网络结构,到创建模拟训练数据、配置损失函数(如交叉熵损失)与优化器(如Adam或SGD)。文中提供了清晰的训练循环与测试流程代码,并汇总了可执行的完整实例。此外,文章通过模型损失曲线的图表输出与代码结构可视化,直观展示了训练动态与项目架构,帮助读者从理论理解平滑过渡到

2026-02-05 22:03:20 651

原创 《PyTorch卷积神经网络实战:从理论架构到代码实现的完整指南》

文章开篇回顾了CNN的经典结构,依次解析了输入层、卷积层、激活函数、池化层、归一化层、全连接层、输出层等核心组件,并扼要说明了优化器与正则化技术。核心部分以实战为导向,逐步演示了使用PyTorch实现CNN的具体步骤:从导入必要的库、加载与预处理数据集,到定义网络模型架构、选取损失函数与优化器,再到执行模型的训练循环与测试评估。文中不仅汇总了可供直接运行的关键代码,还展示了训练损失曲线与测试准确率等可视化结果,直观呈现模型的学习过程与性能。此外,文章贴心地针对实践中可能遇到的典型报错(如SSL证书验证失败)

2026-02-05 13:12:13 937

原创 《手把手PyTorch线性回归实战:从数据生成、模型训练到评估可视化》

文章开篇即阐明使用 PyTorch 实现线性回归的核心价值,将传统统计方法与现代深度学习框架有机结合。正文以清晰的步骤化结构展开:首先详细讲解了数据准备环节,指导如何生成具有简单线性关系且包含两个特征的模拟数据集,为模型训练奠定基础。随后,通过具体代码示例演示了如何定义线性回归模型结构,明确神经网络层的构建方式。文章进一步阐述了损失函数(均方误差)与优化器(如SGD)的选择原理,并逐步解析了模型训练循环的完整流程,涵盖前向传播、损失计算、反向传播与参数更新等关键步骤。在模型评估部分,不仅介绍了评估指标,更提

2026-02-04 22:10:52 977

原创 《深入PyTorch数据引擎:自定义数据封装、高效加载策略与多源融合实战》

文章开篇阐明PyTorch数据处理的核心流程与设计理念,随即深入自定义Dataset类的创建方法,通过具体示例演示如何继承并实现关键方法以封装任意格式的数据。其次,详解DataLoader的高效批量加载、乱序与并行化机制,并附以实用代码。针对计算机视觉任务,文章分类梳理了常见的图像预处理操作(如归一化、缩放)与数据增强技术(如随机翻转、裁剪),旨在提升模型泛化能力。实战部分,以经典的MNIST数据集加载为例,展示标准图像数据的完整处理流程。更进一步,文章探讨了多源数据集的集成策略,提供了融合多个异质数据源的

2026-02-04 12:09:29 682

原创 《PyTorch神经网络从开发到调试:实战技巧、可视化与兼容性问题解决方案》

文章首先引导读者实现一个简单的前馈神经网络,详细拆解了网络参数定义、数据生成、模型构建、损失函数与优化器配置以及训练循环等核心步骤,并附有对应的输出结果。接着,通过可视化梯度下降算法的训练过程,直观展示了模型参数更新的动态效果。文章的核心部分聚焦于一个完整的二分类任务实战,从非线性数据的生成与说明开始,逐步演示了定义神经网络结构、选择损失函数与优化器、执行模型训练、评估测试性能以及可视化决策边界与损失曲线的全过程,并提供了完整可运行的代码汇总。最后,文章贴心地汇总了开发中常见的报错(如 matplot

2026-02-03 22:00:18 830

原创 《PyTorch神经网络完全指南:从神经元、FNN/RNN原理到训练实战全解析》

文章开篇从神经元、输入输出、层等基础概念切入,构建对人工神经网络的基本理解。随后深入剖析前馈神经网络的基本结构,并介绍循环神经网络的时序特性,阐明二者在架构与适用场景上的核心差异。实现层面,文章详细展示了如何构建简单的全连接神经网络,包括激活函数与损失函数的选择与具体应用示例,为模型搭建提供了清晰模板。优化与训练部分,文章不仅解析了优化器的工作原理,更通过完整的训练过程与测试评估示例,手把手演示了从数据准备、模型训练到性能验证的全流程。最后,文章对不同神经网络类型进行了扼要总结,帮助读者建立系统化的知识框架

2026-02-03 12:04:19 763

原创 《解锁 PyTorch 张量:多维数据操作与 GPU 性能优化全解析》

文章开篇详细介绍了张量的多维特性,通过 2D 矩阵及其他维度的创建方法,为读者构建起对张量结构的直观理解。随后深入解析张量的关键属性,包括数据类型、形状和设备位置,并通过示例代码加深理解。核心部分聚焦张量操作技术,涵盖基础运算、形状变换、数学计算、条件筛选及与其他张量的交互操作,为实际开发提供完整工具箱。文章特别强调了GPU 加速策略,指导如何将张量迁移至 GPU 并进行可用性检查,以最大化计算效能。最后,系统讲解PyTorch 与 NumPy 的互操作机制,包括内存共享与数据复制等关键细节,实现与科

2026-02-02 21:09:09 1475

原创 《PyTorch 终极实战解析:从架构设计到模型训练的性能优化全攻略》

文章开篇阐释 PyTorch 的基础概念与分层架构(Python API、C++ 核心与基础库),并详解其执行流程。核心章节深入剖析张量(Tensor),涵盖其维度、形状、创建、操作、设备迁移及梯度与内存特性;进而聚焦 自动求导(Autograd)​ 机制,对比动态图与静态图差异,演示梯度计算与反向传播。文章重点指导如何使用 nn.Module​ 构建神经网络,完整呈现前向传播、损失计算与优化器调用的训练流程,并通过具体示例逐步拆解模型训练步骤。最后,补充了设备(CPU/GPU)管理的关键实践,为读者提供了

2026-02-02 12:24:05 932

原创 《PyTorch官方安装最佳实践:从源码到二进制,从CPU到GPU,从Intel到M1/M2的完整攻略》

本文提供了一份详尽的跨平台安装指南。首先,文章明确了 PyTorch 对主流操作系统(Windows、macOS、Linux)的兼容性,以及所需的 Python 版本与硬件基础。对于追求GPU加速的用户,指南重点阐述了CUDA版本与NVIDIA显卡驱动的匹配原则。其次,文章指导读者进行安装前的系统自查与环境准备,无论是使用 conda还是 venv创建独立的Python环境。核心部分则分门别类地详解了多种安装路径:从最便捷的CPU版本pip安装,到利用Conda进行依赖管理,再到为不同CUDA版本定制的GP

2026-02-01 20:03:10 2189

原创 《选择PyTorch的N个理由:一份来自特性、生态与社区的全面评估》

PyTorch 是一个以两大核心特征著称的深度学习框架。其首要特性是动态计算图,它允许在运行时定义和修改计算流程,为模型开发与调试带来了极大的灵活性。其次,PyTorch 提供了类似 NumPy 的张量操作,并集成了自动求导系统,使得梯度计算和反向传播过程简洁高效。在模型构建方面,其 torch.nn模块让神经网络的定义与训练流程十分直观。同时,PyTorch 具备强大的 GPU 加速能力,能够显著提升大规模计算任务的效率。该框架拥有活跃的社区和丰富的生态系统,提供了从计算机视觉到自然语言处理的全套工具链。

2026-02-01 16:48:37 1005

原创 《CPU的“外交官”与“快递员”:解码I/O接口与DMA的协同奥秘》

本章“输入/输出系统”阐述了计算机与外部世界进行信息交换的完整体系。首先介绍I/O系统的基本组成与演变历程,并概述各类外部设备。核心内容聚焦于I/O接口的功能与结构,及其端口编址方式。随后,系统深入地讲解了三种关键的I/O控制方式:依赖CPU轮询的程序查询方式、通过信号异步通知CPU的程序中断方式,以及由专用控制器实现数据直传的DMA方式,重点分析了它们的工作原理、处理过程及在CPU效率与I/O速度间的权衡。全章揭示了I/O系统作为协调主机与外部设备高效、可靠协作的关键机制。

2026-01-05 16:48:19 1761

原创 《共享之路的拥堵与调度:总线仲裁与定时协议揭秘》

本章“总线”系统阐述了计算机系统中各部件间互联与通信的公共通路。首先介绍了总线的基本概念、特点、分类(如系统总线、并行/串行总线)及性能指标,核心是其共享性与带宽。其次,重点讲解了总线仲裁机制,解决多设备竞争使用权的问题,包括集中式与分布式仲裁。接着,详细分析了总线操作定时的四种方式(同步、异步、半同步、分离式通信),它们决定了数据传输的时序与控制规则。最后,概述了实际的总线标准,如PCI、USB等,将理论与工业实现连接。全章揭示,高效、可靠的总线系统是协调CPU、内存与I/O设备协同工作的“信息高速公路”

2026-01-03 16:36:37 974

原创 《超越顺序:揭秘CPU如何用流水线与多核“加速”思考》

本章“中央处理器”深入探讨了计算机的运算与控制核心。首先阐述CPU的功能、基本结构(运算器、控制器)及指令执行的全周期过程。核心在于数据通路的构建(单总线/专用通路)与控制器的实现原理——既包括直接由硬件逻辑实现的硬布线控制器,也包含依靠微程序存储的微程序控制器,并比较了二者特点。为提高性能,本章重点讲解了指令流水线技术,分析其影响因素(结构、数据、控制相关)与分类,并介绍了超标量等先进流水线设计。此外,还涵盖了异常中断处理机制,以及多处理器、硬件多线程等提升并行处理能力的基本概念。全章系统揭示了CPU从基

2026-01-02 16:12:33 1047

原创 《CPU的指令集架构:定义计算之基的格式、寻址与范式》

本章“指令系统”阐述了计算机硬件与软件间的核心接口,定义了CPU可执行的基本命令集合。首先,从指令格式入手,解析操作码与地址码的组成,并介绍扩展操作码技术。核心部分详细讲解了指令寻址与多种数据寻址方式(如直接、间接、寄存器、基址、变址等),它们共同决定了如何定位指令与操作数。接着,探讨了高级语言程序(如选择、循环结构)在机器级的表示,揭示了其与底层汇编指令的对应关系。最后,对CISC与RISC两种主流设计理念进行了基本对比。全章旨在理解,指令系统是衡量计算机性能的关键属性,其设计直接决定了硬件结构、效率和软

2026-01-01 16:41:53 643

原创 《记忆魔法:计算机如何用“缓兵之计”征服速度瓶颈?》

本章“存储系统”系统阐述了计算机存储体系的层次化设计与关键技术。内容从存储器的分类与性能指标切入,详细分析了主存储器(SRAM、DRAM、ROM)的原理及其与CPU的连接方式,并介绍了磁盘、固态硬盘等外部存储器。核心部分深入讲解了高速缓存(Cache)的工作原理、地址映射、替换算法和写策略,以缓解CPU与主存间的速度矛盾。最后引入虚拟存储器概念,拓展了存储管理逻辑。全章揭示了通过多层次、不同特性的存储器协同工作,实现系统在速度、容量与成本间优化平衡的完整架构。

2025-12-31 14:51:11 1244

原创 《运算的真相:超越加减乘除的底层逻辑战争》

系统阐述计算机中数据的底层表示与运算机制。首先讲解数制转换及定点数的原码、反码、补码等核心编码方法。在此基础上,深入剖析运算的硬件实现,包括逻辑门、加法器、ALU构成的基本运算电路,并详细分析定点数的移位、加减乘除运算原理与过程。最后探讨浮点数的IEEE 754标准表示方法及其加减运算,并涉及数据存储的大小端模式等概念。全章贯通了从数据编码、运算逻辑到硬件实现的知识体系。

2025-12-30 14:06:09 832

原创 《计算机系统解码:从晶体管狂飙到性能博弈》

本文围绕“计算机系统概述”展开,系统阐述了计算机的基本概念、发展脉络、体系结构与性能评价。内容主要分为三部分:首先回顾计算机硬件与软件的发展历程,包括摩尔定律及当前趋势;其次深入剖析计算机系统的层次结构,涵盖硬件组成、工作原理、冯·诺依曼体系、软件分类以及“存储程序”的工作方式;最后介绍了衡量计算机性能的各类指标,包括存储器、CPU及系统整体的性能参数。本章旨在建立对计算机系统整体框架和工作原理的初步认识,为后续学习奠定基础。

2025-12-30 00:31:38 1553

原创 深入浅出一下从电子商务到社交网络:排序算法在实际业务中的关键角色——动画可视化排序算法题试炼

经典排序算法详解插入排序:直接插入排序通过逐元素比较实现有序扩展,引入哨兵优化边界判断;折半插入排序利用二分查找减少比较次数;希尔排序以增量分组提升效率。交换排序:冒泡排序通过相邻元素交换逐步“浮出”极值;快速排序以分治思想选取枢轴实现高效划分,需优化枢轴选择与递归深度控制。选择排序:简单选择排序遍历选择极值;堆排序基于大根堆/小根堆结构实现动态极值维护,时间复杂度稳定为O(n logn)。归并排序:分治策略合并有序子序列,稳定性强,适用于外部排序场景。基数排序:按关键字位分配与收集数据

2025-04-26 21:34:51 3126 40

原创 深入浅出一下从电子商务到社交网络:排序算法在实际业务中的关键角色——动画可视化排序算法(完结撒花!)

经典排序算法详解插入排序:直接插入排序通过逐元素比较实现有序扩展,引入哨兵优化边界判断;折半插入排序利用二分查找减少比较次数;希尔排序以增量分组提升效率。交换排序:冒泡排序通过相邻元素交换逐步“浮出”极值;快速排序以分治思想选取枢轴实现高效划分,需优化枢轴选择与递归深度控制。选择排序:简单选择排序遍历选择极值;堆排序基于大根堆/小根堆结构实现动态极值维护,时间复杂度稳定为O(n logn)。归并排序:分治策略合并有序子序列,稳定性强,适用于外部排序场景。基数排序:按关键字位分配与收集数据

2025-04-20 21:25:26 2695 47

原创 是我代码中的 color: #FF1493 —— 你的爱让我心动不已

从盒子模型基础出发,深入解析内边距(padding)对元素尺寸的影响及其解决方案,剖析外边距(margin)塌陷现象与BFC布局上下文应对策略。通过Flex弹性布局模块化拆解响应式设计实现路径,结合浮动布局历史演进与clearfix清除浮动方案对比,构建多维度布局知识体系。重点演示定位机制(position)在层叠上下文中的精准控制,配合2D/3D转换(transform)实现空间视觉交互。进阶部分涵盖CSS动画全流程,从过渡(transition)平滑效果到关键帧(@keyframes)复杂动画编排,

2025-04-14 08:52:12 1948 31

原创 深入浅出一下Python面向对象编程的核心概念与实践应用

重点解析了__init__构造方法、__str__对象描述、__lt__比较运算符等魔法方法的应用场景,并以分数排序、手机价格输出等示例演示其实现逻辑。针对封装特性,详细阐述了通过私有属性/方法实现数据库安全连接、温度状态判断等典型封装模式,展示了属性访问控制与数据隐藏的核心优势。

2025-04-13 22:30:41 1900 39

原创 深入浅出一下Python函数的核心概念与进阶应用

变量作用域的局部与全局划分、函数注释的规范写法、参数传递中值与引用的区别、匿名函数的灵活应用,以及Python 3.8的新特性(如海象运算符)。进一步深入偏函数、嵌套函数与闭包的实现,详解装饰器的语法与进阶用法(参数传递、多装饰器顺序、返回值处理)。最后结合高阶函数(map、filter、reduce)实现数据批量操作,并通过综合实验——工资计算系统,串联知识点,实践员工信息管理与月薪计算逻辑。

2025-04-13 19:47:29 2044 21

原创 从淘宝推荐到微信搜索:查找算法如何支撑亿级用户——动画可视化数据结构之查找算法题试炼

本文通过动画可视化深入解析数据结构中的核心查找算法,从基础概念到高阶应用,全面覆盖顺序查找、折半查找、分块查找、B树/B+树及散列查找的核心原理与实现细节。文章以动态演示为核心工具,直观展现算法执行过程与数据结构演化,帮助读者突破抽象理论难点。

2025-04-06 20:56:45 2631 67

原创 从淘宝推荐到微信搜索:查找算法如何支撑亿级用户——动画可视化数据结构之查找算法

本文通过动画可视化深入解析数据结构中的核心查找算法,从基础概念到高阶应用,全面覆盖顺序查找、折半查找、分块查找、B树/B+树及散列查找的核心原理与实现细节。文章以动态演示为核心工具,直观展现算法执行过程与数据结构演化,帮助读者突破抽象理论难点。

2025-03-30 21:54:44 2387 51

原创 地图导航的幕后英雄:图论如何改变出行?—全程动画可视化数据结构算法之图算法题目试炼

聚焦经典算法实践,涵盖最短路径(Dijkstra、Floyd)、最小生成树(Prim、Kruskal)、拓扑排序等;聚焦经典算法实践,涵盖最短路径(Dijkstra、Floyd)、最小生成树(Prim、Kruskal)、拓扑排序等;详解邻接矩阵与邻接表两种存储结构的实现原理,提供代码算法思路与核心代码实现(如6.2.1/6.2.2题),分析时间复杂度和适用场景;通过链式存储结构示意图等思维扩展题(6.4.2题)深化对复杂图结构的理解,最后的归纳总结梳理图算法知识体系,强调从存储到应用的完整链路,助力读者构建

2025-03-23 21:39:48 3826 58

原创 地图导航的幕后英雄:图论如何改变出行?—全程动画可视化数据结构算法之图

本文系统解析数据结构与算法中“图”的核心知识体系,涵盖基础概念、存储结构、遍历算法及其高级应用。首先介绍图的定义与分类(无向图、有向图、带权图等),剖析顶点度、连通性、生成树等核心概念;接着探讨图的四大存储方法——邻接矩阵、邻接表、十字链表与邻接多重表的实现与性能对比。以动画可视化形式详解图的广度优先遍历(BFS)与深度优先遍历(DFS),并分析其复杂度及生成树特性。重点阐述最小生成树算法(Prim与Kruskal)的贪心策略与实现步骤,以及最短路径问题中BFS、Dijkstra、Floyd算法的适用场景与

2025-03-16 23:41:37 2708 72

原创 那些未说出口的告白,终会顺着线索遍历到你的心底——数据结构算法之树算法习题试炼

基于树的定义和基本术语树的性质、二叉树的定义和基本术语各种二叉树的性质、二叉树的储存结构、二叉树的先中后序遍历、二叉树的层序遍历、由遍历序列构造二叉树、线索二叉树的概、念二叉树的线索化、在线索二叉树中找前驱后驱、树的储存结构树、和森林的遍历、BST、AVL、哈夫曼树、并查集、并查集的压缩路径的全方位的算法题试炼

2025-03-09 20:55:40 2373 68

原创 我的思念像满二叉树般疯长,每个空指针都指向你的方向——全程动画可视化数据结构算法之二叉树

全程代码结合动画可视化数据结构算法:树的定义和基本术语树的性质、二叉树的定义和基本术语各种二叉树的性质、二叉树的储存结构、二叉树的先中后序遍历、二叉树的层序遍历、由遍历序列构造二叉树、线索二叉树的概、念二叉树的线索化、在线索二叉树中找前驱后驱、树的储存结构树、和森林的遍历、BST、AVL、哈夫曼树、并查集、并查集的压缩路径

2025-03-01 00:30:57 2227 86

原创 网络空间安全之一个WH的超前沿全栈技术深入学习之路(四:保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali——Liinux-Debian:就怕你学成黑客啦!)作者——LJS

保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali以及常见的报错及对应解决方案、常用Kali功能简便化以及详解如何具体实现

2024-10-22 23:34:38 2573 86

原创 2024全网最全面及最新且最为详细的网络安全技巧 十一:应急响应系列之Windows,Linux权限维持—后门篇(剧终完结撒花)[含三大渗透测试框架及Github项目地址和24护网行动各厂商面试精题]

应急响应系列之Windows,Linux权限维持——后门篇(剧终——完结撒花)[含三大渗透测试框架及Github项目地址和24护网行动各厂商面试精题]

2024-08-30 16:01:18 2999 62

原创 2024全网最全面及最新且最为详细的网络安全技巧 十一:应急响应系列之Windows,Linux权限维持篇;(3)[含Mysql日志分析;Sql注入入侵排查及24护网行动各厂商面试精题]

应急响应系列之Windows,Linux权限维持篇;(3)[含Mysql日志分析;Sql注入入侵排查及24护网行动各厂商面试精题]

2024-08-29 23:28:06 1925 49

原创 2024全网最全面及最新且最为详细的网络安全技巧 十一:应急响应系列之Windows,Linux入侵排查(1)[含2024护网行动各厂商面试精题及全网查杀工具整合]

2024应急响应系列之Windows,Linux入侵排查(1)[含2024护网行动各厂商面试精题及常用查杀工具]

2024-08-28 00:13:10 1801 31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除