自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 深度学习实战:基于 CIFAR-10 的 CNN 图像分类实验

本文介绍了基于PyTorch深度学习框架在CIFAR-10数据集上进行图像分类的实践。CIFAR-10数据集包含10个类别的60000张32x32彩色图像,适合用于图像分类算法的研究和实践。文章从简单的卷积神经网络(SimpleCNN)逐步过渡到较为复杂的残差网络(ResNet18),详细阐述了环境准备、数据加载、模型构建、训练和测试的步骤。通过实验,SimpleCNN在测试集上的准确率为58.7%,而ResNet18的准确率达到了89.4%。文章还提供了训练过程的可视化工具,帮助分析模型性能。最终结论指出

2025-05-23 08:00:00 1795

原创 深度学习图像去噪:算法对比与优化

本项目聚焦于图像去噪算法的研究,通过对比深度学习算法与传统算法,优化图像去噪效果。采用CIFAR-10数据集,构建去噪自编码器作为核心模型,并与高斯滤波、中值滤波、全变分去噪等传统方法进行对比。研究结果表明,去噪自编码器在峰值信噪比(PSNR)和结构相似性指数(SSIM)上均显著优于传统方法,尤其在复杂噪声场景下表现出更强的去噪能力和细节保留能力。项目通过数据预处理、特征工程、模型训练与评估,验证了深度学习模型在图像去噪任务中的优势,为实际应用提供了更优的解决方案。

2025-05-21 21:42:47 1535 2

原创 基于PSO算法的Rastrigin多峰函数全局优化实验

本文探讨了使用粒子群优化(PSO)算法求解Rastrigin函数全局最优解的方法。Rastrigin函数作为典型多峰函数,其理论最优值为0,但传统方法易陷入局部最优。实验设置30个粒子、50次迭代,采用惯性权重0.7和学习因子1.5的参数配置。通过初始化粒子群、迭代更新位置速度、记录最优值等步骤,算法成功逼近理论最优解。实验分析了PSO的收敛速度、稳定性和参数敏感性,验证了其在多峰函数优化中的有效性,并提供了完整的Python实现代码。结果表明PSO能有效解决复杂优化问题,参数调优可进一步提升性能。

2025-05-27 08:00:00 716

原创 图像分割实验:从基础处理到高级边缘检测

本文介绍了一个完整的图像分割实验流程,涵盖图像读取、预处理、边缘检测和阈值分割等关键步骤。实验使用OpenCV、NumPy和Matplotlib等工具,详细展示了Sobel算子(包括水平、垂直和对角线方向)、拉普拉斯算子、LoG算子和Canny边缘检测等多种方法的实现与对比。同时探讨了全局阈值和自适应阈值分割技术。通过系统的代码实现和可视化展示,读者可以直观了解不同图像处理技术的效果差异。实验特别注重中文环境配置和异常处理,为数字图像处理学习提供了实用参考,适用于医学影像、自动驾驶和遥感分析等等。

2025-05-26 08:00:00 541

原创 遗传算法原理与实现

本文实现了一个完整的遗传算法框架,用于优化二次函数x²的最小化问题。算法包含六大核心组件:目标函数、种群初始化、锦标赛选择、均匀交叉、非均匀变异和精英策略。通过200代种群迭代,采用100个个体、0.05变异率等参数,算法成功收敛到接近最优解。实验显示随着代数增加,最优适应度逐渐下降。文章还提出自适应参数、多种群并行等改进方向,指出该框架可扩展至高维优化、组合优化等复杂问题,展现了遗传算法在解决优化问题上的通用性和有效性。

2025-05-25 08:00:00 731

原创 图像分类:使用CNN对蝴蝶图像进行分类

本文详细介绍了如何使用卷积神经网络(CNN)对蝴蝶图像进行分类。文章从环境准备、数据准备与检查、数据预处理与增强、数据可视化、构建CNN模型、模型训练、训练过程可视化、模型验证与预测等方面,逐步展示了整个分类任务的流程。通过数据增强和早停机制等技术,提升了模型的性能和泛化能力。最终,通过可视化训练过程和预测结果,直观评估了模型的表现。本文为图像分类领域的学习和实践提供了参考。

2025-05-24 08:00:00 787

原创 OpenCV图像操作与灰度化

OpenCV由一系列C函数和少量C++类组成,同时提供了Python、Java、MATLAB等多种语言的接口。其应用场景极为宽泛,涵盖但不限于物体识别、运动跟踪、图像分割、机器学习等。借助OpenCV,开发者能够高效地实现复杂的图像和视频处理算法。灰度化处理指的是将彩色图像转换为灰度图像的过程。灰度图像仅有一个通道,每个像素的取值范围通常为0(黑色)到255(白色)。灰度化处理能够减少图像的数据量,降低计算复杂度,同时在某些应用场景下,灰度图像更能凸显图像的特征。

2025-05-22 14:22:05 794

Butterfly 75-class Dataset

该数据集以75种不同种类的蝴蝶为特征。数据集包含约1000+标记图像,包括验证图像。每张图像只属于一个蝴蝶类别。每个图像的标签都保存在Training_set.csv中。可对75种不同类别的蝴蝶进行可视化分析、模型训练及分类预测等。

2025-05-23

深度学习实战:基于 CIFAR-10 的 CNN 图像分类实验配套代码

基于PyTorch深度学习框架,在CIFAR - 10数据集上进行图像分类实践,从简单的卷积神经网络(SimpleCNN)逐步过渡到较为复杂的残差网络(ResNet18)。CIFAR - 10数据集包含10个不同类别的60000张32x32彩色图像,适合用于图像分类算法的研究和实践

2025-05-22

cifar-100-python.tar

1. 数据集概览 - 60,000 张 32x32 彩色图像,涵盖 100 个细粒度类别(如“苹果”“摩托车”等),每类 600 张。 - 官方划分为 50,000 训练集 + 10,000 测试集。 - 与 CIFAR-10 的区别:类别更细(100 vs 10)、层级结构(20 个大类 + 5 个小类/大类)。 2. 核心特点 - 图像低分辨率挑战:32x32 像素,适合轻量级模型测试。 - 细粒度分类难度:如“蜜蜂”“甲虫”需模型捕捉细微特征。 3. 应用场景 - 图像分类、小样本学习、迁移学习(如 ResNet、EfficientNet 基准测试)。 - 对比实验(如对比 CIFAR-10 的性能差异)。 适用读者:计算机视觉初学者、算法研究者、希望快速验证模型性能的开发者。

2025-05-22

cifar-10-batches.zip

CIFAR-10 是一个经典的图像分类数据集,包含 10 个类别的 60,000 张 32x32 彩色图像(50,000 训练 + 10,000 测试),类别包括飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。 特点: - 轻量级,适合快速实验和教学 - 低分辨率,分类具有挑战性 - 常用于 CNN、数据增强和迁移学习的基准测试 使用建议: - 预处理:标准化、数据增强(翻转/裁剪) - 可直接通过 `tensorflow.keras.datasets.cifar10.load_data()` 加载

2025-05-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除