Python||基于蝴蝶图迭代法的快速傅里叶变换实现

概要

        蝶形结蝶形网络(英语:Butterfly diagram)是快速傅里叶变换算法中的组成单位,将原本的较大点数的离散傅里叶运算,拆成较小点数的离散傅立叶运算组合,反之亦然(将原本点数较小的离散傅立叶运算,组合成较大点数离散傅里叶运算的组合) 来源:维基百科

        这里蝴蝶法的核心思想笔者不再赘述,可以参考b站视频:快速搞懂傅里叶变换

代码实现:

import numpy as np

def DFT(poly):
    n = len(poly)
    if n == 1:
        return poly
    #将多项式分成奇数次数项和偶数次数项
    poly_even = poly[::2]  # 偶数次数项
    poly_odd = poly[1::2]  # 奇数次数项

    #递归计算偶数次数项和奇数次数项的离散傅里叶变换
    dft_even = DFT(poly_even)
    dft_odd =  DFT(poly_odd)
    
    #合并结
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值