自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 MATLAB:一种超声图像的运动分析方法(块匹配法)

本文探讨了心血管疾病(CVD)早期诊断中血管壁运动检测的重要性,重点分析了基于超声图像的块匹配算法。文章比较了归一化相关系数(NCC)、平均绝对差(MAD)和均方差(MSD)三种匹配准则在血管径向运动估计中的性能差异。实验结果显示:MAD算法计算效率最高(0.34s),但对局部突变最敏感;NCC算法耗时最长(0.44s)但鲁棒性最好;MSD算法(0.38s)在误差敏感性上介于二者之间。三种算法整体趋势一致,但MAD在15-20帧区间出现显著峰值(突破6),体现了不同匹配准则的特性差异。

2026-01-19 22:15:58 1152 1

原创 一种基于EEGNet的肌电信号对手势与前臂姿态分类的探索

本文提出一种基于EEGNet和注意力机制的表面肌电信号(sEMG)手势与前臂姿态分类方法。针对传统方法在复杂环境下易受干扰的问题,通过构建轻量化EEGNet网络并引入通道注意力机制,实现了对12种手势和3种前臂姿态的分类。实验结果表明,EEGNet-Attention在手势分类任务中取得73%的准确率,较基础EEGNet提升4.68个百分点,但在前臂姿态分类中表现略逊于基础网络。分析表明,注意力机制能有效提升手势识别性能,但对姿态特征的适应性有待优化。该研究为提升肌电控制系统在复杂环境下的适应性提供了新思路

2025-12-31 21:36:23 1123

原创 基于多元特征融合的手势与前臂姿态精准分类方法研究

本文提出一种基于多元特征融合的表面肌电图手势与前臂姿态分类方法。研究首先从8通道sEMG信号中提取时域、频域和自回归三类特征共232个,通过皮尔逊相关系数法降维至77个,再结合互信息法筛选出最优特征子集。采用随机森林模型进行分类,实验结果表明:手势分类准确率达0.88(F1-score 0.87-0.88),较前期工作提升12.8%;姿态分类准确率0.71(F1-score 0.68-0.73),提升12.7%。多元特征融合策略有效增强了模型对不同动作模式的区分能力,为提升肌电控制的环境适应性提供了新思路。

2025-12-29 17:59:33 1156 2

原创 基于随机森林的表面肌电图信号对手势与前臂姿态分类分析

本文提出了一种基于表面肌电信号(sEMG)的手势识别方法,针对动态姿态变化导致的识别性能下降问题展开研究。研究采用包含19名受试者在3种前臂姿态下执行12种手势动作的sEMG数据集,通过预处理、时域特征提取和相关系数筛选后,利用随机森林算法进行分类。实验结果表明:手势识别准确率达78%,优于姿态分类的63%;特征分析显示"通道5极差"是最重要特征,而姿态信息在信号中分布较分散。研究揭示了sEMG信号对动作和姿态的区分特性,为开发适应性更强的义肢控制系统提供了新思路。

2025-12-05 22:18:26 926 2

原创 基于 PPG 时频域特征融合与多机器学习算法的心理压力智能诊断模型研究

摘要:本研究基于PPG信号和机器学习算法开发心理压力诊断方法。通过采集27名健康本科生的耳垂PPG信号,提取33个时域和频域特征,经t检验筛选出19个显著特征。采用5种机器学习算法(支持向量机、随机森林、梯度提升、逻辑回归、近邻分析)进行建模,5折交叉验证结果显示支持向量机表现最优,平均准确率达77.82%。研究表明PPG信号结合机器学习可有效识别心理压力状态,为开发低成本、可穿戴的心理压力监测设备提供技术参考。但样本量较小(56例)可能影响模型泛化能力,未来需扩大样本规模并优化特征选择方法。

2025-11-25 18:11:33 1087

原创 基于EEGNet网络的脑电信号对阿尔茨海默与额颞叶痴呆的辅助诊断研究

本文提出一种基于EEGNet网络的阿尔茨海默病(AD)与额颞叶痴呆(FTD)自动辅助诊断框架。研究使用88名受试者(36例AD、23例FTD、29例健康对照)的静息态脑电数据,通过EEGNet网络直接从原始信号中学习特征,实现三分类诊断。实验结果表明,该模型综合准确率达0.99,各类别的精确率、召回率和F1-score均超过0.99,混淆矩阵显示仅少量AD与FTD样本存在交叉误判。研究验证了EEGNet在神经退行性疾病诊断中的有效性,为临床辅助诊断提供了新的技术路径。

2025-11-19 19:12:00 1327 1

原创 基于贝叶斯函数型线性模型的PPG信号对心血管动力学参数预测研究

本文基于光电容积脉搏波信号,采用贝叶斯函数型线性回归模型预测心血管动力学参数。通过B样条基函数对4374例虚拟受试者的桡动脉PPG数据进行特征提取,建立了收缩压(SBP)、舒张压(DBP)、脉压(PP)、平均动脉压(MAP)和脉搏波速度(PWV)的预测模型。结果表明:模型对血压参数预测效果优异,其中DBP预测R²达0.9977(RMSE=0.3182),MAP预测R²为0.9979(RMSE=0.3099);但对PWV预测相对较差(R²=0.8873)。研究为无创心血管监测提供了新思路。

2025-11-09 17:50:03 1125

原创 基于一维卷积神经网络的PPG信号心肌梗死预测研究

本文提出了一种基于一维卷积神经网络(1D-CNN)的PPG信号分析方法,用于心肌梗死的早期筛查。研究采用滤波处理和单/多周期信号提取等预处理方法,构建了VGG架构的1D-CNN模型,在三种数据配置下进行对比实验。结果显示,多周期数据的预测效果显著优于单周期数据(AUC达0.9637),而噪声影响相对较小。该方法展示了PPG信号在心血管疾病风险评估中的潜力,但存在特征完整性不足、模型可解释性较弱等局限。未来研究将聚焦于多维度特征融合和深度学习模型优化,以提高预测精度和泛化能力。

2025-11-06 14:59:11 1233 1

原创 基于主成分分析的PPG信号特征用于心肌梗死预测研究

本文提出一种融合主成分分析(PCA)与机器学习的光电容积脉搏波(PPG)信号处理方法,用于心肌梗死(MI)的无创预测。研究首先对PPG信号进行降噪和周期提取预处理,随后采用PCA降维获得主成分特征,并比较了不同数据处理方式(单周期/多周期、滤波/未滤波)对模型性能的影响。实验表明,主成分特征与人工提取的时域特征预测性能相当,在多种机器学习模型中均表现良好,其中梯度提升(GradientBoosting)在单周期数据上AUC最高达0.972。研究验证了基于PCA的特征自动提取方法在心血管疾病筛查中的可行性。

2025-11-02 20:55:02 1195 2

原创 基于统计信息融合的PPG时域特征在心肌梗死预测的研究

摘要:本研究提出一种融合统计信息的PPG时域特征提取方法,用于心肌梗死(MI)风险预测。通过对2576例PPG信号提取41个时域特征(27个波形特征+14个统计特征),经随机森林筛选保留12个关键特征。采用五种机器学习模型评估性能,结果表明:波形+统计特征组合效果最优(随机森林AUC 0.97),优于单一特征组;随机森林综合表现最佳。研究为无创MI筛查提供了新思路,但需进一步优化参数和拓展多域特征以提高性能。

2025-11-01 21:52:35 1152

原创 基于 PPG 信号与机器学习算法的心肌梗死预测研究

本研究探索基于PPG信号与机器学习的心肌梗死预测方法,通过对2576例PPG信号进行高斯滤波和单周期提取,从中提取27个时域特征,并构建5种机器学习模型进行对比。结果显示所有模型性能优异,其中梯度提升模型表现最佳(AUC=0.964),支持向量机、随机森林和K近邻的准确率均达96.3%。研究表明PPG信号结合机器学习可有效预测心肌梗死,但未来需优化参数、融合多域特征以进一步提升性能。该方法为心血管疾病早期筛查提供了新的无创技术方案。

2025-10-31 16:56:08 1656 2

基于随机森林和EEGNet对肌电信号对手势与前臂姿态分类的探索研究

当前资源是博客:(1)一种基于EEGNet的肌电信号对手势与前臂姿态分类的探索 (2)基于多元特征融合的手势与前臂姿态精准分类方法研究 (3)基于随机森林的表面肌电图信号对手势与前臂姿态分类分析 的完整代码,包括数据预处理、特征提取、特征筛选、模型构建和模型评价。

2025-12-31

博客-基于 PPG 时频域特征融合与多机器学习算法的心理压力智能诊断模型研究-完整代码和数据

该博客基于PPG信号和机器学习算法开发心理压力诊断方法。通过基于27名健康本科生的耳垂PPG信号,提取33个时域和频域特征,经t检验筛选出19个显著特征。采用5种机器学习算法(支持向量机、随机森林、梯度提升、逻辑回归、近邻分析)进行建模,5折交叉验证结果显示支持向量机表现最优,平均准确率达77.82%。研究表明PPG信号结合机器学习可有效识别心理压力状态,为开发低成本、可穿戴的心理压力监测设备提供技术参考。但样本量较小(56例)可能影响模型泛化能力,未来需扩大样本规模并优化特征选择方法。 这个资源包括了该博客的完整代码、数据、以及的相关结果。包括SG滤波、时域和频域特征提取、t检验以及机器学习的完整代码过程,可供机器学习,医学信号处理等初学者应用和学习。

2025-11-26

博客-基于EEGNet网络的脑电信号对阿尔茨海默与额颞叶痴呆的辅助诊断研究的完整代码

该博客提出一种基于EEGNet网络的阿尔茨海默病(AD)与额颞叶痴呆(FTD)自动辅助诊断框架。研究使用88名受试者(36例AD、23例FTD、29例健康对照)的静息态脑电数据,通过EEGNet网络直接从原始信号中学习特征,实现三分类诊断。实验结果表明,该模型综合准确率达0.99,各类别的精确率、召回率和F1-score均超过0.99,混淆矩阵显示仅少量AD与FTD样本存在交叉误判。研究验证了EEGNet在神经退行性疾病诊断中的有效性,为临床辅助诊断提供了新的技术路径。文件中有EEGNet网络的完整代码以及相关文献。

2025-11-19

博客-基于一维卷积神经网络的PPG信号心肌梗死预测研究的完整代码

该博客提出了一种基于一维卷积神经网络(1D-CNN)的PPG信号分析方法,用于心肌梗死的早期筛查。研究采用滤波处理和单/多周期信号提取等预处理方法,构建了VGG架构的1D-CNN模型,在三种数据配置下进行对比实验。结果显示,多周期数据的预测效果显著优于单周期数据(AUC达0.9637),而噪声影响相对较小。该方法展示了PPG信号在心血管疾病风险评估中的潜力,但存在特征完整性不足、模型可解释性较弱等局限。未来研究将聚焦于多维度特征融合和深度学习模型优化,以提高预测精度和泛化能力。 此文件夹含一维卷积神经网络的完整代码,此外上传源数据(PPG_Dataset)、滤波后的数据(filtered_data)以及单周期滤波后的数据(cycles)。可供初学者使用。

2025-11-19

基于机器学习的人工智能的PPT(1-4)

这个四个ppt主要讲解了机器学习的思想、概念,流程等。 ppt(1)主要阐述了机器学习是人工智能的一种,深度学习是机器学习的一种特殊方式。机器学习本质、对象、任务以及分类。 ppt(2)主要阐述了机器学习数据划分、模型误差以及评价指标。 ppt(3)主要阐述了机器学习模型确定的核心原则以及模型的形式。 ppt(4)主要阐述了机器学习模型在医学图像处理中应用,采用logistic回归对肿瘤的诊断的例子 这四个PPT可快速了解机器学习的过程、且里面有大量图片展示机器学习的一些思想,可供初学者使用以及制作PPT使用。

2025-11-05

基于 PPG 信号与机器学习算法的心肌梗死预测研究的完整代码

本研究探索基于PPG信号与机器学习的心肌梗死预测方法,通过对2576例PPG信号进行高斯滤波和单周期提取,从中提取27个时域特征,并构建5种机器学习模型进行对比。结果显示所有模型性能优异,其中梯度提升模型表现最佳,支持向量机、随机森林和K近邻的准确率均达96.3%。研究表明PPG信号结合机器学习可有效预测心肌梗死,但未来需优化参数、融合多域特征以进一步提升性能。该方法为心血管疾病早期筛查提供了新的无创技术方案。

2025-11-03

博客 基于主成分分析的PPG信号特征用于心肌梗死预测研究 完整代码

本文提出一种融合主成分分析(PCA)与机器学习的光电容积脉搏波(PPG)信号处理方法,用于心肌梗死(MI)的无创预测。研究首先对PPG信号进行降噪和周期提取预处理,随后采用PCA降维获得主成分特征,并比较了不同数据处理方式(单周期/多周期、滤波/未滤波)对模型性能的影响。实验表明,主成分特征与人工提取的时域特征预测性能相当,在多种机器学习模型中均表现良好,其中梯度提升(GradientBoosting)在单周期数据上AUC最高达0.972。研究验证了基于PCA的特征自动提取方法在心血管疾病筛查中的可行性。

2025-11-03

博客:基于统计信息融合的PPG时域特征在心肌梗死预测的研究的完整代码

本研究提出一种融合统计信息的PPG时域特征提取方法,用于心肌梗死(MI)风险预测。通过对2576例PPG信号提取41个时域特征(27个波形特征+14个统计特征),经随机森林筛选保留12个关键特征。采用五种机器学习模型评估性能,结果表明:波形+统计特征组合效果最优(随机森林AUC 0.97),优于单一特征组;随机森林综合表现最佳。研究为无创MI筛查提供了新思路,但需进一步优化参数和拓展多域特征以提高性能。

2025-11-03

一个心动周期内的PPG信号

该数据基于 Kaggle 平台的 Photoplethysmography (PPG) Dataset 展开通过 Python 加载数据并查看基本信息,确认数据集为含 2576 行、2001 列(2000 列 float64 类型特征、1 列 object 类型 “Label” 列)、占用约 39.3MB 内存的 DataFrame,目标变量 “Label” 分为 “Normal”(无心肌梗死迹象)和 “MI”(心肌梗死相关迹象)两类。接着进行数据查看,绘制前 20 行 PPG 信号变化趋势图,发现部分信号存在明显噪声;绘制标签分布图,得知 “Normal” 标签 1282 个、“MI” 标签 1294 个,两类标签分布均衡。随后进入数据预处理阶段,针对信号噪声问题,采用高斯加权移动滤波方法(窗口大小 51、标准差 5)对数据进行滤波,对比原始信号与滤波后信号,确认达到预期滤波效果,并将所有数据滤波后生成新数据集 ;为简化建模复杂度,基于 PPG 信号 “上升 - 峰值 - 下降 - 谷值” 的周期性特征,利用 find_peaks 函数检测滤波后数据的峰值与谷值,提取第二部分单周期信号,且统一单周期信号长度为 250,经验证提取结果均符合单周期规律,最终生成新数据集 “cycles”,为后续建模分析奠定基础。

2025-11-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除