- 博客(11)
- 收藏
- 关注
原创 MATLAB:一种超声图像的运动分析方法(块匹配法)
本文探讨了心血管疾病(CVD)早期诊断中血管壁运动检测的重要性,重点分析了基于超声图像的块匹配算法。文章比较了归一化相关系数(NCC)、平均绝对差(MAD)和均方差(MSD)三种匹配准则在血管径向运动估计中的性能差异。实验结果显示:MAD算法计算效率最高(0.34s),但对局部突变最敏感;NCC算法耗时最长(0.44s)但鲁棒性最好;MSD算法(0.38s)在误差敏感性上介于二者之间。三种算法整体趋势一致,但MAD在15-20帧区间出现显著峰值(突破6),体现了不同匹配准则的特性差异。
2026-01-19 22:15:58
1152
1
原创 一种基于EEGNet的肌电信号对手势与前臂姿态分类的探索
本文提出一种基于EEGNet和注意力机制的表面肌电信号(sEMG)手势与前臂姿态分类方法。针对传统方法在复杂环境下易受干扰的问题,通过构建轻量化EEGNet网络并引入通道注意力机制,实现了对12种手势和3种前臂姿态的分类。实验结果表明,EEGNet-Attention在手势分类任务中取得73%的准确率,较基础EEGNet提升4.68个百分点,但在前臂姿态分类中表现略逊于基础网络。分析表明,注意力机制能有效提升手势识别性能,但对姿态特征的适应性有待优化。该研究为提升肌电控制系统在复杂环境下的适应性提供了新思路
2025-12-31 21:36:23
1123
原创 基于多元特征融合的手势与前臂姿态精准分类方法研究
本文提出一种基于多元特征融合的表面肌电图手势与前臂姿态分类方法。研究首先从8通道sEMG信号中提取时域、频域和自回归三类特征共232个,通过皮尔逊相关系数法降维至77个,再结合互信息法筛选出最优特征子集。采用随机森林模型进行分类,实验结果表明:手势分类准确率达0.88(F1-score 0.87-0.88),较前期工作提升12.8%;姿态分类准确率0.71(F1-score 0.68-0.73),提升12.7%。多元特征融合策略有效增强了模型对不同动作模式的区分能力,为提升肌电控制的环境适应性提供了新思路。
2025-12-29 17:59:33
1156
2
原创 基于随机森林的表面肌电图信号对手势与前臂姿态分类分析
本文提出了一种基于表面肌电信号(sEMG)的手势识别方法,针对动态姿态变化导致的识别性能下降问题展开研究。研究采用包含19名受试者在3种前臂姿态下执行12种手势动作的sEMG数据集,通过预处理、时域特征提取和相关系数筛选后,利用随机森林算法进行分类。实验结果表明:手势识别准确率达78%,优于姿态分类的63%;特征分析显示"通道5极差"是最重要特征,而姿态信息在信号中分布较分散。研究揭示了sEMG信号对动作和姿态的区分特性,为开发适应性更强的义肢控制系统提供了新思路。
2025-12-05 22:18:26
926
2
原创 基于 PPG 时频域特征融合与多机器学习算法的心理压力智能诊断模型研究
摘要:本研究基于PPG信号和机器学习算法开发心理压力诊断方法。通过采集27名健康本科生的耳垂PPG信号,提取33个时域和频域特征,经t检验筛选出19个显著特征。采用5种机器学习算法(支持向量机、随机森林、梯度提升、逻辑回归、近邻分析)进行建模,5折交叉验证结果显示支持向量机表现最优,平均准确率达77.82%。研究表明PPG信号结合机器学习可有效识别心理压力状态,为开发低成本、可穿戴的心理压力监测设备提供技术参考。但样本量较小(56例)可能影响模型泛化能力,未来需扩大样本规模并优化特征选择方法。
2025-11-25 18:11:33
1087
原创 基于EEGNet网络的脑电信号对阿尔茨海默与额颞叶痴呆的辅助诊断研究
本文提出一种基于EEGNet网络的阿尔茨海默病(AD)与额颞叶痴呆(FTD)自动辅助诊断框架。研究使用88名受试者(36例AD、23例FTD、29例健康对照)的静息态脑电数据,通过EEGNet网络直接从原始信号中学习特征,实现三分类诊断。实验结果表明,该模型综合准确率达0.99,各类别的精确率、召回率和F1-score均超过0.99,混淆矩阵显示仅少量AD与FTD样本存在交叉误判。研究验证了EEGNet在神经退行性疾病诊断中的有效性,为临床辅助诊断提供了新的技术路径。
2025-11-19 19:12:00
1327
1
原创 基于贝叶斯函数型线性模型的PPG信号对心血管动力学参数预测研究
本文基于光电容积脉搏波信号,采用贝叶斯函数型线性回归模型预测心血管动力学参数。通过B样条基函数对4374例虚拟受试者的桡动脉PPG数据进行特征提取,建立了收缩压(SBP)、舒张压(DBP)、脉压(PP)、平均动脉压(MAP)和脉搏波速度(PWV)的预测模型。结果表明:模型对血压参数预测效果优异,其中DBP预测R²达0.9977(RMSE=0.3182),MAP预测R²为0.9979(RMSE=0.3099);但对PWV预测相对较差(R²=0.8873)。研究为无创心血管监测提供了新思路。
2025-11-09 17:50:03
1125
原创 基于一维卷积神经网络的PPG信号心肌梗死预测研究
本文提出了一种基于一维卷积神经网络(1D-CNN)的PPG信号分析方法,用于心肌梗死的早期筛查。研究采用滤波处理和单/多周期信号提取等预处理方法,构建了VGG架构的1D-CNN模型,在三种数据配置下进行对比实验。结果显示,多周期数据的预测效果显著优于单周期数据(AUC达0.9637),而噪声影响相对较小。该方法展示了PPG信号在心血管疾病风险评估中的潜力,但存在特征完整性不足、模型可解释性较弱等局限。未来研究将聚焦于多维度特征融合和深度学习模型优化,以提高预测精度和泛化能力。
2025-11-06 14:59:11
1233
1
原创 基于主成分分析的PPG信号特征用于心肌梗死预测研究
本文提出一种融合主成分分析(PCA)与机器学习的光电容积脉搏波(PPG)信号处理方法,用于心肌梗死(MI)的无创预测。研究首先对PPG信号进行降噪和周期提取预处理,随后采用PCA降维获得主成分特征,并比较了不同数据处理方式(单周期/多周期、滤波/未滤波)对模型性能的影响。实验表明,主成分特征与人工提取的时域特征预测性能相当,在多种机器学习模型中均表现良好,其中梯度提升(GradientBoosting)在单周期数据上AUC最高达0.972。研究验证了基于PCA的特征自动提取方法在心血管疾病筛查中的可行性。
2025-11-02 20:55:02
1195
2
原创 基于统计信息融合的PPG时域特征在心肌梗死预测的研究
摘要:本研究提出一种融合统计信息的PPG时域特征提取方法,用于心肌梗死(MI)风险预测。通过对2576例PPG信号提取41个时域特征(27个波形特征+14个统计特征),经随机森林筛选保留12个关键特征。采用五种机器学习模型评估性能,结果表明:波形+统计特征组合效果最优(随机森林AUC 0.97),优于单一特征组;随机森林综合表现最佳。研究为无创MI筛查提供了新思路,但需进一步优化参数和拓展多域特征以提高性能。
2025-11-01 21:52:35
1152
原创 基于 PPG 信号与机器学习算法的心肌梗死预测研究
本研究探索基于PPG信号与机器学习的心肌梗死预测方法,通过对2576例PPG信号进行高斯滤波和单周期提取,从中提取27个时域特征,并构建5种机器学习模型进行对比。结果显示所有模型性能优异,其中梯度提升模型表现最佳(AUC=0.964),支持向量机、随机森林和K近邻的准确率均达96.3%。研究表明PPG信号结合机器学习可有效预测心肌梗死,但未来需优化参数、融合多域特征以进一步提升性能。该方法为心血管疾病早期筛查提供了新的无创技术方案。
2025-10-31 16:56:08
1656
2
基于随机森林和EEGNet对肌电信号对手势与前臂姿态分类的探索研究
2025-12-31
博客-基于 PPG 时频域特征融合与多机器学习算法的心理压力智能诊断模型研究-完整代码和数据
2025-11-26
博客-基于EEGNet网络的脑电信号对阿尔茨海默与额颞叶痴呆的辅助诊断研究的完整代码
2025-11-19
博客-基于一维卷积神经网络的PPG信号心肌梗死预测研究的完整代码
2025-11-19
基于机器学习的人工智能的PPT(1-4)
2025-11-05
基于 PPG 信号与机器学习算法的心肌梗死预测研究的完整代码
2025-11-03
博客 基于主成分分析的PPG信号特征用于心肌梗死预测研究 完整代码
2025-11-03
博客:基于统计信息融合的PPG时域特征在心肌梗死预测的研究的完整代码
2025-11-03
一个心动周期内的PPG信号
2025-11-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅