摘 要
基于Python大数据技术的音乐推荐系统设计与实现旨在利用大数据处理和分析技术,为用户提供个性化、精准的音乐推荐服务。该系统将结合用户行为数据、音乐特征和大规模数据集,采用机器学习和深度学习算法,实现智能化的音乐推荐功能。
系统设计包括数据采集与清洗、特征提取与分析、推荐算法实现和用户交互界面开发等模块。通过Python编程语言和大数据处理框架,如PySpark、Pandas等,实现对海量音乐数据的高效处理和分析,提高推荐系统的准确性和效率。
音乐推荐系统的实现将突破传统推荐系统的局限,结合大数据技术,能够更精准地理解用户需求和音乐特征,为用户提供个性化、优质的音乐推荐体验。通过该系统的设计与实现,将为音乐推荐领域带来更高效、智能化的解决方案,推动音乐推荐技术的发展和应用。
关键词:基于Python的音乐推荐系统的设计与实现;SPARK框架;MYSQL数据库
Design and Implementation of a Music Recommendation System Based on Python
Abstract
The design and implementation of a music recommendation system based on Python big data technology aims to utilize big data processing and analysis techniques to provide users with personalized and accurate music recommendation services. The system will combine user behavior data, music features, and large-scale datasets, using machine learning and deep learning algorithms to achieve intelligent music recommendation functionality.
The system design includes modules such as data collection and cleaning, feature extraction and analysis, implementation of recommendation algorithms, and development of user interaction interfaces. By using Python programming language and big data processing frameworks such as PySpark and Pandas, efficient processing and analysis of massive music data can be achieved, improving the accuracy and efficiency of recommendation systems.
The implementation of a music recommendation system will break through the limitations of traditional recommendation systems and, combined with big data technology, can more accurately understand user needs and music characteristics, providing users with personalized and high-quality music recommendation experiences. The design and implementation of this system will bring more efficient and intelligent solutions to the field of music recommendation, promoting the development and application of music recommendation technology.
Keywords: Design and Implementation of a Music Recommendation System Based on Python;spark framework; MYSQ Ldatabase
目 录
4.11 表music_classification (音乐分类)
4.14 表personalized_music (个性化音乐)
4.15 表popular_downloads (热门下载)
第一章 绪论
1.1 研究背景和意义
随着数字音乐的普及和音乐流媒体服务的兴起,用户面临着海量的音乐选择,如何快速找到符合自己口味的音乐成为一项挑战。基于Python的音乐推荐系统的研究与实现应运而生。
(1)背景:
音乐推荐系统可以根据用户的偏好和行为,智能地为用户推荐个性化的音乐内容,提升用户体验和音乐欣赏体验。
Python作为一种功能强大的编程语言,具有丰富的数据处理和机器学习库,适合用于构建推荐系统。
(2)意义:
提高音乐推荐准确性:通过分析用户行为和音乐特征,基于Python的音乐推荐系统可以提供更准确、个性化的推荐结果。
促进音乐产业发展:音乐推荐系统可以帮助用户发现更多优质音乐作品,推广艺术家的作品,促进音乐产业的发展和推广。
提升用户体验:用户可以更便捷地发现自己喜欢的音乐,增加音乐欣赏的乐趣和体验,提升用户粘性和满意度。
推动技术创新:通过研究基于Python的音乐推荐系统,可以探索音乐推荐算法和模型在实际应用中的效果,推动推荐系统技术的发展和创新。
综上所述,基于Python的音乐推荐系统的研究与实现具有重要意义,不仅可以提升音乐推荐的准确性和个性化程度,还能促进音乐产业的发展和推广,提升用户体验和满意度,推动技术创新和应用。
1.2 国内外研究现状
在音乐推荐系统领域,国内外已经开展了许多研究,不断探索如何利用先进技术提升音乐推荐的准确性和用户体验。
1.国外研究现状:
在国外,许多知名音乐流媒体平台如Spotify、Apple Music、Pandora等早已应用音乐推荐系统,采用协同过滤、内容推荐等算法,为用户提供个性化的音乐推荐服务。
外国研究者也积极探索深度学习等先进技术在音乐推荐系统中的应用,提高推荐准确性和用户满意度。
2.国内研究现状:
在国内,音乐推荐系统也受到广泛关注,各大音乐平台如网易云音乐、QQ音乐等积极探索推荐系统的优化和个性化服务。
国内研究者致力于结合用户行为数据和音乐特征,优化推荐算法,提升音乐推荐的准确性和用户体验。
3.研究趋势和挑战:
研究者们普遍关注如何结合用户画像、情感分析、多模态数据等信息,提高音乐推荐的个性化程度和精准度。
随着深度学习和自然语言处理等技术的发展,研究者们也在探索如何将这些技术应用于音乐推荐系统中,提升推荐效果。
综上所述,国内外在音乐推荐系统领域的研究取得了丰硕成果,不断探索和创新,为提升音乐推荐的准确性和用户体验做出了积极贡献。未来,随着技术的不断进步和用户需求的不断变化,音乐推荐系统将迎来更多挑战和机遇,需要不断优化和创新。
1.3 论文章节安排
第一章是绪论,本文章的开头部分,对本题目的研究背景意义和研究现状等一些做文字性的描述。
第二章研究了音乐推荐系统的所采用的开发技术和开发工具。
第三章是系统分析部分,包括系统总体需求描述、功能性角度分析系统需求、非功能性等各个方面分析系统是否可以实现。
第四章是系统设计部分,本文章的重要部分,提供了系统架构的详细设计和一些主要功能模块的设计说明。
第五章是系统的具体实现,介绍系统的各个模块的具体实现。
第六章在前几章的基础上对系统进行测试和运行。
最后对系统进行了认真的总结,以此对未来有一个新的展望。
第二章 相关技术研究
2.1 开发技术说明
本系统前端部分基于MVVM模式进行开发,采用B/S模式,后端部分基于python的spark框架进行开发。
前端部分:前端框架采用了比较流行的渐进式JavaScript框架Vue.js。使用Vue-Router和Vuex实现动态路由和全局状态管理,Ajax实现前后端通信,Element UI组件库使页面快速成型,项目前端通过栅格布局实现响应式,可适应PC端、平板端、手机端等不同屏幕大小尺寸的完美布局展示。
后端部分:采用Django作为开发框架,同时集成Redis等相关技术。
2.2 B/S体系工作原理
B/S架构采取浏览器请求,服务器响应的工作模式。
用户可以通过浏览器去访问Internet上由Web服务器产生的文本、数据、图片、动画、视频点播和声音等信息;
而每一个Web服务器又可以通过各种方式与数据库服务器连接,大量的数据实际存放在数据库服务器中;
从Web服务器上下载程序到本地来执行,在下载过程中若遇到与数据库有关的指令,由Web服务器交给数据库服务器来解释执行,并返回给Web服务器,Web服务器又返回给用户。在这种结构中,将许许多多的网连接到一块,形成一个巨大的网,即全球网。而各个企业可以在此结构的基础上建立自己的Internet。
在 B/S 模式中,用户是通过浏览器针对许多分布于网络上的服务器进行请求访问的,浏览器的请求通过服务器进行处理,并将处理结果以及相应的信息返回给浏览器,其他的数据加工、请求全部都是由Web Server完成的。通过该框架结构以及植入于操作系统内部的浏览器,该结构已经成为了当今软件应用的主流结构模式。
2.3 SPARK框架介绍
Apache Spark 是一个快速、通用、可扩展的大数据处理引擎,最初由加州大学伯克利分校的AMPLab开发,后来成为Apache软件基金会的顶级项目。Spark 提供了高效的数据处理能力,支持多种数据处理任务,包括批处理、交互式查询、流处理和机器学习。以下是 Spark 框架的主要特点和组成部分:
1.特点:
高速度: Spark采用内存计算,能够快速处理大规模数据,并通过弹性分布式数据集(RDD)实现高效的数据处理。
通用性: 支持多种数据处理模式,如批处理、流处理、机器学习和图处理,满足不同场景下的数据处理需求。
易用性: 提供丰富的API,支持Scala、Java、Python和R等多种编程语言,使得用户可以方便地编写数据处理程序。
容错性: Spark具有强大的容错机制,能够在计算过程中自动恢复失败的任务,保证数据处理的可靠性。
可扩展性: 可以在集群中线性扩展,通过添加更多的节点来处理更大规模的数据。
2.组成部分:
Spark Core: 提供了Spark的基本功能和任务调度机制,包括RDD抽象、任务调度、内存管理等。
Spark SQL: 用于结构化数据处理,支持SQL查询和DataFrame操作,方便用户进行数据分析和查询。
Spark Streaming: 提供实时流处理功能,能够处理实时数据流,并支持窗口操作和状态管理。
MLlib: 机器学习库,提供了常见的机器学习算法和工具,方便用户进行大规模机器学习任务。
GraphX: 图计算库,支持图数据的处理和分析,适用于图形算法和图数据库等领域。
3.应用场景:
大规模数据处理: 适用于大规模数据的清洗、转换、分析和处理。
实时数据处理: 支持实时流数据的处理和分析,适用于实时监控、实时计算等场景。
机器学习: 提供丰富的机器学习算法和工具,可用于大规模数据的模型训练和预测。
Apache Spark 框架作为一个高效、多功能的大数据处理引擎,被广泛应用于各种大数据处理和分析场景,为用户提供了强大的数据处理能力和性能优势。
2.4 MySQL数据库
MySQL经过多次的更新,功能层面已经非常的丰富和完善了,从MySQL4版本到5版本进行了比较大的更新,在商业的实际使用中取得了很好的实际应用效果。最新版本的MySQL支持对信息的压缩,同时还能进行加密能更好的满足对信息安全性的需求。同时经过系统的多次更新,数据库自身的镜像功能也得到了很大的增强,运行的流畅度和易用性方面有了不小的进步,驱动的使用和创建也更加的高效快捷。最大的变动还是进行了空间信息的显示优化,能更加方便的在应用地图上进行坐标的标注和运算。强大的备份功能也保证了用户使用的过程会更加安心,同时支持的Office特性还支持用户的自行安装和使用。在信息的显示形式上也进行了不小的更新,增加了两个非常使用的显示区,一个是信息区,对表格和文字进行了分类处理,界面的显示更加清爽和具体。第二是仪表的信息控件,能在仪表信息区进行信息的显示,同时还能进行多个信息的比对,为用户的实际使用带来了很大的便捷[7][8]。
针对本文中设计的音乐推荐系统在实际的实现过程中,最终选择MySQL数据库的主要原因在于在企业的应用系统应用及开发的过程中会存在大量的数据库比较频繁的操作,而且数据的安全性要求也是非常的高。综合这些因素,最终选择安全性系数比较高的MySQL来对音乐推荐系统后台数据进行存储操作[9][10]。
数据库管理系统的总体结构图如下图所示。
图2-1 数据库组成结构
2.5 Ajax 应用
该技术在 1998 年前后得到了应用。允许客户端脚本发送HTTP请求(XMLHTTP)的第一个组件由Outlook Web Access小组写成。该组件原属于微软 Exchange Server,并且迅速地成为了 Internet Explorer 4.0 的一部分。部分观察家认为,Outlook Web Access 是第一个应用了 Ajax 技术的成功的商业应用程序,并成为包括Oddpost 的网络邮件产品在内的许多产品的领头羊。但是,2005 年初,许多事件使得 Ajax 被大众所接受。Google 在它著名的交互应用程序中使用了异步通讯,如Google、Google 地图、Google 搜索建议、Gmail等。Ajax 这个词由《Ajax: A New Approach to Web Applications》一文所创,该文的迅速传播加强了人们使用该项技术的意识。另外,对Mozilla/Gecko 的支持使得该技术走向成熟,变得更为易用。
Ajax 前景非常乐观,可以提高系统性能,优化用户界面。Ajax 现有直接框架 AjaxPro,可以引入 AjaxPro.2.dll 文件,可以直接在前台页面 JavaScript 调用后台页面的方法。但此框架与表单验证有冲突。另外微软也引入了 Ajax 组件,需要添加AjaxControlToolkit.dll 文件,可以在控件列表中出现相关控件。
第三章 系统分析
3.1 可行性分析
技术性方面,采用当前主流的spark框架进行系统主体框架的搭建,前端框架采用了比较流行的渐进式JavaScript框架Vue.js。使用Vue-Router和Vuex实现动态路由和全局状态管理,Ajax实现前后端通信,以上技术,均由本人经过系统学习,并且都是在课程设计中实践过的,可以使得开发更加便捷和系统。从技术角度看,这个系统是完全可以实现的。
实用性方面,本次设计的主要任务是在音乐推荐系统内对数据管控等,符合当前潮流的发展。从用户角度出发,同时也考虑系统运营成本和人力资源,采用网络上的便捷方式,实现线上业务,使得业务流程更系统,也更方便用户的体验,比较实用。
经济性方面,由于本课题中设计的音乐推荐系统的主要目的是为了能够更加方便及快捷的进行信息的查询管理及检索服务,也就是能够可以直接投入使用的信息化软件。系统的主要成本主要是集中在对使用数据后期继续维护及其管理更新这个操作上。但是一旦系统投入到实际的运行及使用之后就能够很好的提高信息查询检索的效率,同时也需要有效的保证查询者的信息方面的安全性,同时这个音乐推荐系统所带来的实际应用方面的价值是远远的超过了实际系统进行开发与维护方面的成本,因此,从经济上来说开发这个软件是可行的。
3.2 功能需求分析
基于Python的音乐推荐系统的设计与实现的功能主要分为用户根据自己的需求进行注册登录。后台系统管理员因职责的不同,管理员主要音乐分类管理、个性化音乐管理、热门播放管理、热门下载管理、音乐数据管理、系统管理、公告信息管理、资源管理进行处理。
普通用户用例图如下所示。
图3-1 普通用户用例图
管理员用例图如下所示。
图3-2 管理员用例图
3.3 非功能需求分析
首先主要考虑的是系统功能软件,在具体设计的环节上,是不是能够较好的满足各类用户的基本功能需求,如果不能较好的满足用户需求,那么这个系统的存在是没有价值的。软件系统的非功能性求分析,从7个方面展开,一个是性能分析,针对系统;一个是安全分析,针对系统,一个是完整度分析,针对系统,一个是可维护分析,针对系统,一个是可扩展性分析,针对系统,一个是适应业务的性能分析。面对音乐推荐系统存在的性能、安全、扩展、完整度等7个方面性能综合比对分析后发现,需要相应的非功能性需求分析。
3.4 安全性需求分析
3.4.1 系统的安全性
安全性对每一个系统来说都是非常重要的。安全性很好的系统可以保护企业的信息和用户的信息不被窃取。提高系统的安全性不仅是对用户的负责,更是对企业的负责。尤其针对于音乐推荐系统来说,必须要有很好的安全性来保障整个系统。
系统具有对使用者有权限控制,针对角色的不通限制使用者的权限,以此来确保系统的安全性。
3.4.2 数据的安全性
数据库中的数据是从外界输入的,当数据的输入时,由于种种原因,输入的数据会无效,或者是脏数据。因此,怎样保证输入的数据符合规定,成为了数据库系统,尤其是多用户的关系数据库系统首要关注的问题。
因此,在写入数据库时,要保证数据完整性、正确性和一致性。
3.5 数据流程分析
对系统的数据流进行分析,系统的使用者为管理员。系统主要对界面信息传送,登录信息的验证,管理员各种操作的响应做处理。
系统顶层数据流图如下图所示。
图3-3 顶层数据流图
要判断用户是是什么身份,是根据登录的数据来判断后,跳转到对应的功能界面。在系统的内部用户就可以对数据进行操作,数据库中心就可以接收到系统传输的有效数据流来对数据sql语句进行对应操作。
系统底层数据流图如下图所示。
图3-4 底层数据流图
第四章 系统设计
4.1 系统架构设计
本音乐推荐系统的架构设计主要分为可以3层,主要有Web层,业务层,Model层。其中web层还包括View层和Controller层,Model层包括元数据扩展层和数据访问层。
系统架构如下图所示。
图4-1 系统架构
4.2 系统总体设计
基于Python的音乐推荐系统的设计与实现总体分为普通用户模块和管理员模块。
两个模块表现上是分别独立存在,但是访问的数据库是一样的。每一个模块的功能都是根据先前完成的需求分析,并查阅相关资料后整理制作的。
综上所述,系统功能结构图如下图所示。
图4-2 系统功能结构图
4.3 数据库设计
4.3.1数据库概念设计
根据前面的数据流程图,结合系统的功能模块设计,设计出符合系统的各信息实体。
系统ER图如下图所示。
图4-3 系统ER图
4.3.2 数据库表设计
4.4 表access_token (登陆访问时长)
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | token_id | int | 10 | 0 | N | Y | 临时访问牌ID | |
2 | token | varchar | 64 | 0 | Y | N | 临时访问牌 | |
3 | info | text | 65535 | 0 | Y | N | ||
4 | maxage | int | 10 | 0 | N | N | 2 | 最大寿命:默认2小时 |
5 | create_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间: |
6 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间: |
7 | user_id | int | 10 | 0 | N | N | 0 | 用户编号: |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | article_id | mediumint | 8 | 0 | N | Y | 文章id:[0,8388607] | |
2 | title | varchar | 125 | 0 | N | Y | 标题:[0,125]用于文章和html的title标签中 | |
3 | type | varchar | 64 | 0 | N | N | 0 | 文章分类:[0,1000]用来搜索指定类型的文章 |
4 | hits | int | 10 | 0 | N | N | 0 | 点击数:[0,1000000000]访问这篇文章的人次 |
5 | praise_len | int | 10 | 0 | N | N | 0 | 点赞数 |
6 | create_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间: |
7 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间: |
8 | source | varchar | 255 | 0 | Y | N | 来源:[0,255]文章的出处 | |
9 | url | varchar | 255 | 0 | Y | N | 来源地址:[0,255]用于跳转到发布该文章的网站 | |
10 | tag | varchar | 255 | 0 | Y | N | 标签:[0,255]用于标注文章所属相关内容,多个标签用空格隔开 | |
11 | content | longtext | 2147483647 | 0 | Y | N | 正文:文章的主体内容 | |
12 | img | varchar | 255 | 0 | Y | N | 封面图 | |
13 | description | text | 65535 | 0 | Y | N | 文章描述 |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | type_id | smallint | 5 | 0 | N | Y | 分类ID:[0,10000] | |
2 | display | smallint | 5 | 0 | N | N | 100 | 显示顺序:[0,1000]决定分类显示的先后顺序 |
3 | name | varchar | 16 | 0 | N | N | 分类名称:[2,16] | |
4 | father_id | smallint | 5 | 0 | N | N | 0 | 上级分类ID:[0,32767] |
5 | description | varchar | 255 | 0 | Y | N | 描述:[0,255]描述该分类的作用 | |
6 | icon | text | 65535 | 0 | Y | N | 分类图标: | |
7 | url | varchar | 255 | 0 | Y | N | 外链地址:[0,255]如果该分类是跳转到其他网站的情况下,就在该URL上设置 | |
8 | create_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间: |
9 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间: |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | auth_id | int | 10 | 0 | N | Y | 授权ID: | |
2 | user_group | varchar | 64 | 0 | Y | N | 用户组: | |
3 | mod_name | varchar | 64 | 0 | Y | N | 模块名: | |
4 | table_name | varchar | 64 | 0 | Y | N | 表名: | |
5 | page_title | varchar | 255 | 0 | Y | N | 页面标题: | |
6 | path | varchar | 255 | 0 | Y | N | 路由路径: | |
7 | position | varchar | 32 | 0 | Y | N | 位置: | |
8 | mode | varchar | 32 | 0 | N | N | _blank | 跳转方式: |
9 | add | tinyint | 3 | 0 | N | N | 1 | 是否可增加: |
10 | del | tinyint | 3 | 0 | N | N | 1 | 是否可删除: |
11 | set | tinyint | 3 | 0 | N | N | 1 | 是否可修改: |
12 | get | tinyint | 3 | 0 | N | N | 1 | 是否可查看: |
13 | field_add | text | 65535 | 0 | Y | N | 添加字段: | |
14 | field_set | text | 65535 | 0 | Y | N | 修改字段: | |
15 | field_get | text | 65535 | 0 | Y | N | 查询字段: | |
16 | table_nav_name | varchar | 500 | 0 | Y | N | 跨表导航名称: | |
17 | table_nav | varchar | 500 | 0 | Y | N | 跨表导航: | |
18 | option | text | 65535 | 0 | Y | N | 配置: | |
19 | create_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间: |
20 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间: |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | collect_id | int | 10 | 0 | N | Y | 收藏ID: | |
2 | user_id | int | 10 | 0 | N | N | 0 | 收藏人ID: |
3 | source_table | varchar | 255 | 0 | Y | N | 来源表: | |
4 | source_field | varchar | 255 | 0 | Y | N | 来源字段: | |
5 | source_id | int | 10 | 0 | N | N | 0 | 来源ID: |
6 | title | varchar | 255 | 0 | Y | N | 标题: | |
7 | img | varchar | 255 | 0 | Y | N | 封面: | |
8 | create_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间: |
9 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间: |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | comment_id | int | 10 | 0 | N | Y | 评论ID: | |
2 | user_id | int | 10 | 0 | N | N | 0 | 评论人ID: |
3 | reply_to_id | int | 10 | 0 | N | N | 0 | 回复评论ID:空为0 |
4 | content | longtext | 2147483647 | 0 | Y | N | 内容: | |
5 | nickname | varchar | 255 | 0 | Y | N | 昵称: | |
6 | avatar | varchar | 255 | 0 | Y | N | 头像地址:[0,255] | |
7 | create_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间: |
8 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间: |
9 | source_table | varchar | 255 | 0 | Y | N | 来源表: | |
10 | source_field | varchar | 255 | 0 | Y | N | 来源字段: | |
11 | source_id | int | 10 | 0 | N | N | 0 | 来源ID: |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | hits_id | int | 10 | 0 | N | Y | 点赞ID: | |
2 | user_id | int | 10 | 0 | N | N | 0 | 点赞人: |
3 | create_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间: |
4 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间: |
5 | source_table | varchar | 255 | 0 | Y | N | 来源表: | |
6 | source_field | varchar | 255 | 0 | Y | N | 来源字段: | |
7 | source_id | int | 10 | 0 | N | N | 0 | 来源ID: |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | music_classification_id | int | 10 | 0 | N | Y | 音乐分类ID | |
2 | music_genre | varchar | 64 | 0 | Y | N | 音乐类型 | |
3 | create_time | datetime | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间 |
4 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间 |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | music_data_id | int | 10 | 0 | N | Y | 音乐数据ID | |
2 | singles_title | varchar | 64 | 0 | Y | N | 歌单标题 | |
3 | creator | varchar | 64 | 0 | Y | N | 创作者 | |
4 | grade | varchar | 64 | 0 | Y | N | 等级 | |
5 | dynamic_quantity | varchar | 64 | 0 | Y | N | 动态数量 | |
6 | number_of_followers | varchar | 64 | 0 | Y | N | 关注数量 | |
7 | number_of_fans | varchar | 64 | 0 | Y | N | 粉丝数量 | |
8 | personal_introduction | text | 65535 | 0 | Y | N | 个人介绍 | |
9 | number_of_playlists_created | varchar | 64 | 0 | Y | N | 创建歌单数量 | |
10 | details_link | varchar | 255 | 0 | Y | N | 详情链接 | |
11 | number_of_collections | varchar | 64 | 0 | Y | N | 收藏数 | |
12 | number_of_forwards | varchar | 64 | 0 | Y | N | 转发数 | |
13 | number_of_comments | varchar | 64 | 0 | Y | N | 评论数 | |
14 | number_of_songs | varchar | 64 | 0 | Y | N | 歌曲数 | |
15 | playback_count | varchar | 64 | 0 | Y | N | 播放次数 | |
16 | people_who_like_this_playlist | text | 65535 | 0 | Y | N | 喜欢这个歌单的人 | |
17 | song_title | varchar | 64 | 0 | Y | N | 歌曲标题 | |
18 | singer | varchar | 64 | 0 | Y | N | 歌手 | |
19 | album | varchar | 64 | 0 | Y | N | 专辑 | |
20 | song_id | varchar | 64 | 0 | Y | N | 歌曲id | |
21 | create_time | datetime | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间 |
22 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间 |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | notice_id | mediumint | 8 | 0 | N | Y | 公告id: | |
2 | title | varchar | 125 | 0 | N | N | 标题: | |
3 | content | longtext | 2147483647 | 0 | Y | N | 正文: | |
4 | create_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间: |
5 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间: |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | personalized_music_id | int | 10 | 0 | N | Y | 个性化音乐ID | |
2 | music_name | varchar | 64 | 0 | Y | N | 音乐名称 | |
3 | music_genre | varchar | 64 | 0 | Y | N | 音乐类型 | |
4 | music_poster | varchar | 255 | 0 | Y | N | 音乐海报 | |
5 | singer_name | varchar | 64 | 0 | Y | N | 歌手名称 | |
6 | music_audio | varchar | 255 | 0 | Y | N | 音乐音频 | |
7 | release_date | date | 10 | 0 | Y | N | 发布日期 | |
8 | music_introduction | text | 65535 | 0 | Y | N | 音乐简介 | |
9 | hits | int | 10 | 0 | N | N | 0 | 点击数 |
10 | praise_len | int | 10 | 0 | N | N | 0 | 点赞数 |
11 | recommend | int | 10 | 0 | N | N | 0 | 智能推荐 |
12 | create_time | datetime | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间 |
13 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间 |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | popular_downloads_id | int | 10 | 0 | N | Y | 热门下载ID | |
2 | music_name | varchar | 64 | 0 | Y | N | 音乐名称 | |
3 | music_genre | varchar | 64 | 0 | Y | N | 音乐类型 | |
4 | music_poster | varchar | 255 | 0 | Y | N | 音乐海报 | |
5 | singer_name | varchar | 64 | 0 | Y | N | 歌手名称 | |
6 | music_audio | varchar | 255 | 0 | Y | N | 音乐音频 | |
7 | music_attachments | varchar | 255 | 0 | Y | N | 音乐附件 | |
8 | release_date | date | 10 | 0 | Y | N | 发布日期 | |
9 | music_introduction | text | 65535 | 0 | Y | N | 音乐简介 | |
10 | hits | int | 10 | 0 | N | N | 0 | 点击数 |
11 | praise_len | int | 10 | 0 | N | N | 0 | 点赞数 |
12 | recommend | int | 10 | 0 | N | N | 0 | 智能推荐 |
13 | create_time | datetime | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间 |
14 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间 |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | popular_plays_id | int | 10 | 0 | N | Y | 热门播放ID | |
2 | music_name | varchar | 64 | 0 | Y | N | 音乐名称 | |
3 | music_genre | varchar | 64 | 0 | Y | N | 音乐类型 | |
4 | music_poster | varchar | 255 | 0 | Y | N | 音乐海报 | |
5 | singer_name | varchar | 64 | 0 | Y | N | 歌手名称 | |
6 | music_audio | varchar | 255 | 0 | Y | N | 音乐音频 | |
7 | release_date | date | 10 | 0 | Y | N | 发布日期 | |
8 | number_of_collections | int | 10 | 0 | Y | N | 0 | 收藏数量 |
9 | music_introduction | text | 65535 | 0 | Y | N | 音乐简介 | |
10 | hits | int | 10 | 0 | N | N | 0 | 点击数 |
11 | praise_len | int | 10 | 0 | N | N | 0 | 点赞数 |
12 | recommend | int | 10 | 0 | N | N | 0 | 智能推荐 |
13 | create_time | datetime | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间 |
14 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间 |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | praise_id | int | 10 | 0 | N | Y | 点赞ID: | |
2 | user_id | int | 10 | 0 | N | N | 0 | 点赞人: |
3 | create_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间: |
4 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间: |
5 | source_table | varchar | 255 | 0 | Y | N | 来源表: | |
6 | source_field | varchar | 255 | 0 | Y | N | 来源字段: | |
7 | source_id | int | 10 | 0 | N | N | 0 | 来源ID: |
8 | status | bit | 1 | 0 | N | N | 1 | 点赞状态:1为点赞,0已取消 |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | regular_users_id | int | 10 | 0 | N | Y | 普通用户ID | |
2 | user_name | varchar | 64 | 0 | Y | N | 用户姓名 | |
3 | user_age | varchar | 64 | 0 | Y | N | 用户年龄 | |
4 | user_gender | varchar | 64 | 0 | Y | N | 用户性别 | |
5 | tag_recommendation | varchar | 64 | 0 | Y | N | 标签推荐 | |
6 | examine_state | varchar | 16 | 0 | N | N | 已通过 | 审核状态 |
7 | user_id | int | 10 | 0 | N | N | 0 | 用户ID |
8 | create_time | datetime | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间 |
9 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间 |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | slides_id | int | 10 | 0 | N | Y | 轮播图ID: | |
2 | title | varchar | 64 | 0 | Y | N | 标题: | |
3 | content | varchar | 255 | 0 | Y | N | 内容: | |
4 | url | varchar | 255 | 0 | Y | N | 链接: | |
5 | img | varchar | 255 | 0 | Y | N | 轮播图: | |
6 | hits | int | 10 | 0 | N | N | 0 | 点击量: |
7 | create_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间: |
8 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间: |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | upload_id | int | 10 | 0 | N | Y | 上传ID | |
2 | name | varchar | 64 | 0 | Y | N | 文件名 | |
3 | path | varchar | 255 | 0 | Y | N | 访问路径 | |
4 | file | varchar | 255 | 0 | Y | N | 文件路径 | |
5 | display | varchar | 255 | 0 | Y | N | 显示顺序 | |
6 | father_id | int | 10 | 0 | Y | N | 0 | 父级ID |
7 | dir | varchar | 255 | 0 | Y | N | 文件夹 | |
8 | type | varchar | 32 | 0 | Y | N | 文件类型 |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | user_id | mediumint | 8 | 0 | N | Y | 用户ID:[0,8388607]用户获取其他与用户相关的数据 | |
2 | state | smallint | 5 | 0 | N | N | 1 | 账户状态:[0,10](1可用|2异常|3已冻结|4已注销) |
3 | user_group | varchar | 32 | 0 | Y | N | 所在用户组:[0,32767]决定用户身份和权限 | |
4 | login_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 上次登录时间: |
5 | phone | varchar | 11 | 0 | Y | N | 手机号码:[0,11]用户的手机号码,用于找回密码时或登录时 | |
6 | phone_state | smallint | 5 | 0 | N | N | 0 | 手机认证:[0,1](0未认证|1审核中|2已认证) |
7 | username | varchar | 16 | 0 | N | N | 用户名:[0,16]用户登录时所用的账户名称 | |
8 | nickname | varchar | 16 | 0 | Y | N | 昵称:[0,16] | |
9 | password | varchar | 64 | 0 | N | N | 密码:[0,32]用户登录所需的密码,由6-16位数字或英文组成 | |
10 | | varchar | 64 | 0 | Y | N | 邮箱:[0,64]用户的邮箱,用于找回密码时或登录时 | |
11 | email_state | smallint | 5 | 0 | N | N | 0 | 邮箱认证:[0,1](0未认证|1审核中|2已认证) |
12 | avatar | varchar | 255 | 0 | Y | N | 头像地址:[0,255] | |
13 | open_id | varchar | 255 | 0 | Y | N | 针对获取用户信息字段 | |
14 | create_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间: |
15 | vip_level | varchar | 255 | 0 | Y | N | 会员等级 | |
16 | vip_discount | double | 11 | 2 | Y | N | 0.00 | 会员折扣 |
编号 | 名称 | 数据类型 | 长度 | 小数位 | 允许空值 | 主键 | 默认值 | 说明 |
1 | group_id | mediumint | 8 | 0 | N | Y | 用户组ID:[0,8388607] | |
2 | display | smallint | 5 | 0 | N | N | 100 | 显示顺序:[0,1000] |
3 | name | varchar | 16 | 0 | N | N | 名称:[0,16] | |
4 | description | varchar | 255 | 0 | Y | N | 描述:[0,255]描述该用户组的特点或权限范围 | |
5 | source_table | varchar | 255 | 0 | Y | N | 来源表: | |
6 | source_field | varchar | 255 | 0 | Y | N | 来源字段: | |
7 | source_id | int | 10 | 0 | N | N | 0 | 来源ID: |
8 | register | smallint | 5 | 0 | Y | N | 0 | 注册位置: |
9 | create_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 创建时间: |
10 | update_time | timestamp | 19 | 0 | N | N | CURRENT_TIMESTAMP | 更新时间: |
第五章 关键模块的设计与实现
5.1 数据库访问层的实现
该系统是通过jdbc和MySQL达成连接的,新建一个jdbc.properties文件来填写与数据库连接所需要的驱动和参数。
jdbc.driverClass=com.MySQL.jdbc.Driver
jdbc.url=jdbc:MySQL://localhost:3306/tsi
jdbc.username=root
jdbc.password=123
第一个参数代表MySQL数据库的驱动,第二个参数代表要连接的数据库,第三个和第四个参数代表数据库连接名和密码。
后台与数据库访问主要是通过HQL语句来进行查询的,查询语句中的表名是表格的实体类名,在这种查询语句中*是不允许使用的,除非适合聚合函数一起使用才可以。
5.2 注册模块的实现
用户在填写数据的时候必须与注册页面上的验证相匹配否则会注册失败,注册页面的表单验证是通过JavaScript进行验证的,邮箱必须带有@符号,密码和密码的确认必须相同,你输入的密码,系统会根据你输入密码的强度给出指定的值,电话号码和身份证号码必须要求输入格式与生活相符合,当你前台验证通过的时候你点击注册,表单会将你输入的值通过name值传递给后台并保存到数据库中。
用户注册流程图如下图所示。
图5-1用户注册流程图
用户注册界面如下图所示。
图5-2用户注册界面
5.3 登录模块的实现
主要由两部分组成,登录前的登录界面以及登录后的用户功能界面。登录界面,要求用户输入用户名和密码,当用户名和密码其中一个输入为空时,给出提示“用户名,密码不能为空”。获取用户名和密码后到数据库中查找,如果用户名存在,以及对应的密码正确,则登录成功,否则登录失败。登录失败后给出提示,并把焦点停在文本框中。登录成功后将该次会话的全局变量username设置为用户名。登录成功后进入会员的功能模块,主要有会员基本信息修改,已经发布检测机构信息管理,发布信息,和退出功能。退出功能是清除全局变量username的值,并跳回到首页。
登录流程图如下图所示。
图5-3登录流程图
用户登录界面如下图所示。
图5-4用户登录界面
5.4 用户资料修改模块的实现
用户登录/注册成功之后可以修改自己的基本信息。修改页面的表单中每一个input的name值都要与实体类中的参数相匹配,在用户点击修改页面的时候,如果改后用户名与数据库里面重复了,页面会提示该用户名已经存在了,否则通过Id来查询用户,并将用户的信息修改为表单提交的数据。
图5-5用户资料修改界面
5.5 音乐数据管理模块的实现
如果音乐数据的信息需要修改,管理员可以通过查询音乐数据的基本信息来查询音乐数据,查询音乐数据是通过ajax技术来进行查询的,需要传递音乐数据的标题、编号等参数然后在返回到该页面中,可以选中要修改或删除的那条信息,如果选中了超过一条数据。当选择确认修改的时候,后台会根据传过来的id到数据库查询,并将结果返回到修改页面中,可以在修改页面中修改刚刚选中的信息当点击确认的时候from表单会将修改的数据提交到后台并保存到数据库中,就是说如果提交的数据数据库中存在就修改,否则就保存。
音乐数据添加界面如下图所示。
图5-5音乐数据添加界面
音乐数据列表界面如下图所示。
图5-6音乐数据列表界面
5.6 管理员功能首页
管理员登录进入系统可以查看音乐分类管理、个性化音乐管理、热门播放管理、热门下载管理、音乐数据管理、系统管理、公告信息管理、资源管理等内容,如下图所示。
信息添加流程图如下图所示。
图5-7信息添加流程图
管理员首页界面如下所示。
图5-8管理员首页界面
5.7 音乐分类管理模块的实现
音乐分类管理,管理员点击“音乐分类管理”这一菜单的时候,会出现音乐分类列表和音乐分类添加这两个子菜单,可以对这两个模块进行增删改查,如下图所示。
图5-9音乐分类列表界面
图5-10音乐分类添加界面
5.8 系统管理模块的实现
系统管理,管理员可以对系统前台展示的轮播图进行增删改查,方便用户进行查看。系统管理界面如下图所示。
图5-11系统管理界面
第六章 系统测试
6.1 测试目的
对任何系统而言,测试都是必不可少的环节,测试可以发现系统存在的很多问题,所有的软件上线之前,都应该进行充足的测试之后才能保证上线后不会Bug频发,或者是功能不满足需求等问题的发生。下面分别从单元测试,功能测试和用例测试来对系统进行测试以保证系统的稳定性和可靠性。
6.2 功能测试
下表是系统登录功能测试用例,检测了用户名和密码的不同的输入情况,观察系统的响应情况。得出该功能达到了设计目标。
表6-1 系统登录功能测试用例
功能描述 | 用于系统登录 | |
测试目的 | 检测登录时的合法性检查 | |
测试数据以及操作 | 预期结果 | 实际结果 |
输入的用户名和密码带有非法字符 | 提示用户名或者密码错误 | 与预期结果一致 |
输入的用户名或者密码为空 | 提示用户名或者密码错误 | 与预期结果一致 |
输入的用户名和密码不存在 | 提示用户名或者密码错误 | 与预期结果一致 |
输入正确的用户名和密码 | 登录成功 | 与预期结果一致 |
下表是注册功能测试用例,检测了各种数据的输入情况,观察系统的响应情况。得出该功能达到了设计目标。
表6-2 注册功能测试用例
功能描述 | 用于用户注册 | |
测试目的 | 检测用户注册时的合法性检查 | |
测试数据以及操作 | 预期结果 | 实际结果 |
输入的手机号不合法 | 提示请输入正确的手机号码 | 与预期结果一致 |
输入的字段为空 | 提示必填项不能为空 | 与预期结果一致 |
输入的密码少于6位 | 提示密码必须为6-12位 | 与预期结果一致 |
输入的密码大于12位 | 提示密码必须为6-12位 | 与预期结果一致 |
6.3 测试策略
测试系统主要针对以下三个方面进行测试:
1、基于Django的系统代码的单元测试,集成测试,系统测试和验收测试结果;
2、测试对象中列出的可测试或不可接受的特征和功能;
3、分析并记录测试要求:日期的书面文件不影响测试的设计、开发和执行。
6.4 测试特性及分析
系统测试的特性如下:
(1)挑剔性:测试是为了找出系统的错误,在系统测试时我们要严格苛刻,十分挑剔。
(2)复杂性:测试是一个非常复杂的过程。
(3)不彻底性:虽然系统经过测试,但测试仍然会存在不够彻底的问题,测试不能保证系统后期运行完整无误,所以要在后期不断的检查、修改。
(4)经济性:通场这种测试称为“选择测试(Selective Testing)”。在测试时要遵守经济性的原则。
经过测试,产品的稳定性和成熟度可以大大提高,产品质量也可以得到保证。
6.5 性能测试
使用阿里云PTS(Performance Testing Service)性能测试服务对线上系统进行压力测试。线上服务器环境为:1核心CPU,1G内存,1Mbps公网带宽,Centos7.0操作系统。
压测过程中使用了2台并发机器,每台机器20个用户并发,对系统主页,登录,数据查询和数据维护等模块进行并发访问,测试结果是有40个用户并发时,数据管理相关页面的响应时间甚至达到了7s,通过查看服务器出网流量发现已经达到1381kb/s,可以看出服务器的带宽已经达到峰值,如果系统使用5Mbps的带宽,系统的响应时间和TPS将会大大增加。在整个测试的过程中,CPU的使用率占用仅8%,也提现出带宽瓶颈对系统的影响非常严重。
第七章 总结与展望
本系统通过对python和Mysql数据库的简介,从硬件和软件两反面说明了系统的可行性,本文结论及研究成果如下:实现了python与Mysql相结合构建的音乐推荐系统,网站可以响应式展示。通过本次音乐推荐系统的研究与实现,我感到学海无涯,学习是没有终点的,而且实践出真知,只有多动手才能尽快掌握它,经验对系统的开发非常重要,经验不足,就难免会有许多考虑不周之处。比如要有美观的界面,更完善的功能,才能吸引更多的用户。
由于在此之前对于python知识没有深入了解,所以从一开始就碰到许多困难,例如一开始的页面显示不规范、数据库连接有问题已经无法实现参数的传递等等,不过通过在网上寻找有关资料以及同学的帮助下最后都得到了解决,在此过程中,我不仅学到了很多知识,也提高了自己解决问题的能力,尤其是学会如何从大量的信息中筛选出所需有用的信息,同时我更加深刻的体会到了,虽然书本上的大部分知识都是有价值,正确的,但实际上每个人编程的思路和对数据处理的方法、思想都是不同的,这就要求我们一定要通过实践才能找到解决问题的方案。在此次毕业设计活动中,我不断的提高了自己,也得到了宝贵的经验,我相信这些对我以后的发展都会有很大帮助。
通过这次基于Python的音乐推荐系统的设计与实现的开发,我参考了很多相关系统的例子,取长补短,吸取了其他系统的长处,逐步对该系统进行了完善,但是该系统还是有很多的不足之处,有待以后进一步学习。
参考文献
[1]Lahdour M ,Bardouni E T ,Hajjaji E O , et al. ERSN-OpenMC-Py: A python-based open-source software for OpenMC Monte Carlo code [J]. Computer Physics Communications, 2024, 299 109121-.
[2]李津. 基于知识图谱的个性化音乐推荐系统设计与实现 [J]. 科学技术创新, 2024, (02): 127-130.
[3]Xiao Z ,Ali Y ,Xin W , et al. Sports Work Strategy of College Counselors Based on MySQL Database Big Data Analysis [J]. International Journal of Information Technology and Web Engineering (IJITWE), 2023, 18 (1): 1-14.
[4]李林,谭澜兰,覃岭. 基于语义分析的音乐智能推荐系统的设计与实现 [J]. 电脑知识与技术, 2023, 19 (27): 36-39
[5]杨建,刘磊,康欣欣. 基于用户行为和音频特征的音乐推荐系统设计与实现 [J]. 无线互联科技, 2023, 20 (09): 55-57.
[6]毛庆航. 基于情感分析的个性化音乐推荐系统的设计与实现[D]. 曲阜师范大学, 2023.
[7]Hutchison M R ,Fraser K ,Yang M , et al. Cinpanemab in Early Parkinson Disease: Evaluation of Biomarker Results From the Phase 2 SPARK Clinical Trial. [J]. Neurology, 2024, 102 (5): e209137-e209137.
[8]王正青. 基于图像情感分类的音乐推荐系统的设计与实现[D]. 东南大学, 2022.
[9]钱贝贝. 基于协同过滤的音乐推荐系统的设计与实现[D]. 阜阳师范大学, 2022.
[10]王思阳. 基于标签特征的长尾音乐推荐系统设计与实现[D]. 北京邮电大学, 2022.
[11]郭武承. 融合知识图谱和深度学习的音乐推荐系统设计与实现[D]. 北京邮电大学, 2022. .
[13]余梦琴. 个性化音乐推荐系统的设计与实现[D]. 华中科技大学, 2022.
[14]任晓洁. 基于spark框架的音乐推荐系统的设计与实现[D]. 首都经济贸易大学, 2021.
[15]彭立涵. 基于大数据平台的音乐推荐系统的设计与实现[D]. 哈尔滨理工大学, 2021.
[16]陈维玮. 基于多任务学习和用户行为序列的音乐推荐系统设计与实现[D]. 北京邮电大学, 2021.
[17]沈国明. 基于原始标签的音乐推荐系统的设计与实现[D]. 北京邮电大学, 2021.
[18]张春花. 基于音域模型的智能音乐推荐系统设计与实现[D]. 成都理工大学, 2021.
[19]何鹏飞. 基于流式大数据的音乐推荐系统的设计与实现[D]. 华中科技大学, 2020.
[20]周煜. 基于因子分解机的音乐推荐系统的设计与实现[D]. 华中科技大学, 2020.
致谢
本次设计历时3个月。在这个毕业设计中,它离不开指导教师的指导,使事情基本顺利。指导老师无论是在毕业设计历经中,还是在论文做完中都给了了我特别大的助益。另1个方面,教师认真负责的工作姿态,谨慎的教学精神厚重的理论水准都使我获益匪浅。他勤恳谨慎的教学育人学习姿态也给我留下了特别特别深的感觉。我从老师那里学到了很多东西。在理论和实践中,我的技能得到了特别大的提高。在此,特向教师表示由衷的感激。
经过对该毕业设计的全部研究和开发,我的系统研发经历了从需求分析到实现详细功能,再到最终测试和维护的特殊进展。让我对系统研发有了更深层次的认识。如今我的动手本领单独处理疑惑的本领也获取到了特别大的演练学习增多,这是这次毕业设计最好的收获。
最后,在整个系统开发过程中,我周围的同学和朋友给了我很多意见,所以我很快就确认了系统的商业思想。在次,我由衷的向他们表示感激。