AI 无人自动直播系统整合了数字人技术、直播推流、自动化控制等多方面功能。以下代码示例以 Python 为基础,结合pytube
进行直播流获取(假设从 YouTube 获取直播源,实际可替换为其他直播源),利用moviepy
处理视频和音频,通过bili - live - danmaku
库实现 B 站直播推流(可按需修改为其他直播平台),并集成之前数字人系统中的语音交互与自然语言处理功能。运行代码前,请确保安装以下库:
import speech_recognition as sr
from transformers import AutoTokenizer, AutoModelForCausalLM
from gtts import gTTS
from moviepy.editor import VideoFileClip, AudioFileClip
import os
import numpy as np
import cv2
from pytube import YouTube
from bilibili_api import live, sync
# 语音识别函数
def recognize_speech():
r = sr.Recognizer()
with sr.Microphone() as source:
print("请说话...")
audio = r.listen(source)
try:
text = r.recognize_google(audio)
print(f"识别到的内容: {text}")
return text
except sr.UnknownValueError:
print("无法识别语音")
return ""
except sr.RequestError as e:
print(f"请求错误; {e}")
return ""
# 自然语言理解与回复生成函数
def generate_response(user_input):
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT - medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT - medium")
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
output = model.generate(input_ids=input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
# 语音合成并返回音频文件路径
def text_to_speech(text, lang='zh - CN'):
tts = gTTS(text=text, lang=lang)
tts.save("response.mp3")
return "response.mp3"
# 简单的唇形同步模拟,根据语音时长调整视频帧
def lip_sync_video(video_path, audio_path):
video = VideoFileClip(video_path)
audio = AudioFileClip(audio_path)
video_duration = video.duration
audio_duration = audio.duration
if video_duration > audio_duration:
new_fps = video.fps * (audio_duration / video_duration)
new_video = video.set_fps(new_fps)
new_video = new_video.set_duration(audio_duration)
else:
new_video = video.set_duration(audio_duration)
new_video.write_videofile("lipsynced_video.mp4", codec='libx264')
return "lipsynced_video.mp4"
# 模拟数字人动作(简单示例,根据语音时长调整视频播放速度)
def simulate_digital_human_action(video_path, audio_path):
video = VideoFileClip(video_path)
audio = AudioFileClip(audio_path)
audio_duration = audio.duration
if video.duration > audio_duration:
speed_factor = video.duration / audio_duration
new_video = video.fx(video.fx.speedx, speed_factor)
else:
new_video = video
new_video.write_videofile("action_simulated_video.mp4", codec='libx264')
return "action_simulated_video.mp4"
# 获取直播源视频(以YouTube为例)
def get_live_source_video(youtube_url):
yt = YouTube(youtube_url)
stream = yt.streams.filter(file_extension='mp4', adaptive=True).first()
stream.download(filename='live_source_video.mp4')
return 'live_source_video.mp4'
# B站直播推流函数(需自行替换房间号和直播密钥等信息)
async def bili_live_push(video_path):
room = live.LiveDanmaku(room_id=123456) # 替换为实际房间号
await room.connect()
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
await room.send_danmaku("这是直播内容") # 可根据需求发送弹幕
await room.send_frame(frame)
cap.release()
await room.close()
# 主函数,整合所有功能
def main():
youtube_url = "https://www.youtube.com/watch?v=xxxxxxx" # 替换为实际YouTube直播链接
live_source_video_path = get_live_source_video(youtube_url)
user_input = recognize_speech()
while user_input.lower() != "退出":
response = generate_response(user_input)
print(f"数字人回复: {response}")
audio_path = text_to_speech(response)
video_path = live_source_video_path
synced_video_path = lip_sync_video(video_path, audio_path)
action_simulated_path = simulate_digital_human_action(synced_video_path, audio_path)
sync(bili_live_push(action_simulated_path))
os.remove(audio_path)
os.remove(synced_video_path)
os.remove(action_simulated_path)
user_input = recognize_speech()
if __name__ == "__main__":
main()