该题是RMQ的灵活应用。
由于数列非降序排列,所以相同的元素都在一起, 那么我们就可以将每个数出现的个数组成一个新的数组运用RMQ求解,但是该题所给区间有可能会将序列“截断”,所以截断部分单独处理,剩下部分用RMQ,最终答案为三部分只和。
细节参见代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INF = 1000000000;
const int maxn = 100000 + 5;
int n,m,L,R,c,q,value[maxn],a[maxn],cnt[maxn],num[maxn],l[maxn],r[maxn],d[maxn][30];
void RMQ_init() {
for(int i = 0; i < c; i++) d[i][0] = cnt[i];
for(int j = 1; (1<<j) <= c; j++)
for(int i = 0; i + (1<<j) - 1 < c; i++)
d[i][j] = max(d[i][j-1], d[i + (1<<(j-1))][j-1]);
}
int RMQ(int L, int R) {
int k = 0;
while((1<<(k+1)) <= R-L+1) k++;
return max(d[L][k], d[R-(1<<k)+1][k]);
}
int main() {
while(~scanf("%d",&n)&&n) {
scanf("%d",&q);
memset(cnt,0,sizeof(cnt));
c = -1;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) {
if(i == 1 || a[i] != a[i-1]) {
cnt[++c]++;
value[c] = a[i];
num[i] = c;
l[i] = i;
for(int j=i-1;j>=1;j--)
if(a[j] == a[i-1]) r[j] = i-1;
else break;
}
else {
cnt[c]++;
num[i] = c;
l[i] = l[i-1];
}
}
for(int j=n;j>=1;j--) {
if(a[j] == a[n]) r[j] = n;
else break;
} ++c;
RMQ_init();
while(q--) {
scanf("%d%d",&L,&R);
if(num[L] == num[R]) {
printf("%d\n",R-L+1); continue;
}
int v1 = r[L]-L+1;
int v2 = R-l[R]+1;
if(num[R] == num[L]+1) {
printf("%d\n",max(v1,v2)); continue;
}
int v3 = RMQ(num[L]+1,num[R]-1);
printf("%d\n",max(v1,max(v2,v3)));
}
}
return 0;
}