11235 - Frequent values (RMQ)

该题是RMQ的灵活应用。  

由于数列非降序排列,所以相同的元素都在一起, 那么我们就可以将每个数出现的个数组成一个新的数组运用RMQ求解,但是该题所给区间有可能会将序列“截断”,所以截断部分单独处理,剩下部分用RMQ,最终答案为三部分只和。

细节参见代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INF = 1000000000;
const int maxn = 100000 + 5;
int n,m,L,R,c,q,value[maxn],a[maxn],cnt[maxn],num[maxn],l[maxn],r[maxn],d[maxn][30];
void RMQ_init() {
    for(int i = 0; i < c; i++) d[i][0] = cnt[i];
    for(int j = 1; (1<<j) <= c; j++)
        for(int i = 0; i + (1<<j) - 1 < c; i++)
        d[i][j] = max(d[i][j-1], d[i + (1<<(j-1))][j-1]);
}
int RMQ(int L, int R) {
    int k = 0;
    while((1<<(k+1)) <= R-L+1) k++;
    return max(d[L][k], d[R-(1<<k)+1][k]);
}
int main() {
    while(~scanf("%d",&n)&&n) {
        scanf("%d",&q);
        memset(cnt,0,sizeof(cnt));
        c = -1;
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        for(int i=1;i<=n;i++) {
            if(i == 1 || a[i] != a[i-1]) {
                cnt[++c]++;
                value[c] = a[i];
                num[i] = c;
                l[i] = i;
                for(int j=i-1;j>=1;j--) 
                    if(a[j] == a[i-1]) r[j] = i-1;
                    else break;
            }
            else {
                cnt[c]++;
                num[i] = c;
                l[i] = l[i-1];
            }
        }
        for(int j=n;j>=1;j--) {
            if(a[j] == a[n]) r[j] = n;
            else break;
        } ++c;
        RMQ_init();
        while(q--) {
            scanf("%d%d",&L,&R);
            if(num[L] == num[R]) {
                printf("%d\n",R-L+1); continue;
            }
            int v1 = r[L]-L+1;
            int v2 = R-l[R]+1;
            if(num[R] == num[L]+1) {
                printf("%d\n",max(v1,v2)); continue;
            }
            int v3 = RMQ(num[L]+1,num[R]-1);
            printf("%d\n",max(v1,max(v2,v3)));
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值