SGU 210. Beloved Sons(二分图匹配)

题目链接:点击打开链接

思路:

本题可以用网络流来解, 从源点向每个王子连一条容量为国王喜爱程度的边, 每个王子向每个他喜欢的女孩也连一条容量为喜爱程度的边, 每个女孩向汇点连一条容量INF的边。

一个更简单的方法是: 考虑匈牙利算法从1~n, 一定会尽量满足前面的人, 所以我们只需要按照国王对王子的喜爱程度排序之后做匈牙利算法即可。

细节参见代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
typedef long double ld;
const ld eps = 1e-9, PI = 3.1415926535897932384626433832795;
const int mod = 1000000000 + 7;
const int INF = 0x3f3f3f3f;
const int seed = 131;
const ll INF64 = ll(1e18);
const int maxn = 500*2 + 10;
int from[maxn], use[maxn], n, k, v, tot, ans[maxn];
vector<int> g[maxn];
struct node {
    int id, v;
    node(int id=0, int v=0):id(id), v(v) {}
    bool operator < (const node& rhs) const {
        return v > rhs.v;
    }
}like[maxn];
bool match(int x) {
    int len = g[x].size();
    for(int i = 0; i < len; i++)
    if(!use[g[x][i]]) {
        use[g[x][i]] = true;
        if(from[g[x][i]] == -1 || match(from[g[x][i]])) {
            from[g[x][i]] = x;
            return true;
        }
    }
    return false;
}
int hungary(int n) {
    tot = 0;
    memset(from, -1, sizeof(from));
    for(int i = 1; i <= n; i++) {
        memset(use, 0, sizeof(use));
        if(match(like[i].id)) ++tot;
    }
    return tot;
}
int main() {
    while(~scanf("%d",&n)) {
        for(int i = 1; i <= n; i++) {
            scanf("%d", &like[i].v);
            like[i].id = i;
        }
        sort(like+1, like+n+1);
        for(int i = 1; i <= n; i++) {
            scanf("%d", &k);
            for(int j = 1; j <= k; j++) {
                scanf("%d", &v);
                g[i].push_back(v);
            }
        }
        hungary(n);
        for(int i = 1; i <= n; i++) {
            if(from[i] == -1) continue;
            ans[from[i]] = i;
        }
        for(int i = 1; i <= n; i++) {
            printf("%d%c", ans[i], i == n ? '\n' : ' ');
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值