题目链接:点击打开链接
思路:
该题暴力当然可以过, 如果数据量加大, 我们还有一种nlogn的算法:FFT
仔细观察这个复习单词量的累加方式可以发现, 这是一个卷积, 可以用FFT加速算法。
细节参见代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include <stack>
#include <ctime>
#include <bitset>
#include <cstdlib>
#include <cmath>
#include <set>
#include <list>
#include <deque>
#include <map>
#include <queue>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
typedef long double ld;
const double eps = 1e-6;
const double PI = acos(-1);
const int mod = 1000000000 + 7;
const int INF = 0x3f3f3f3f;
// & 0x7FFFFFFF
const int seed = 131;
const ll INF64 = ll(1e18);
const int maxn = 4000 + 10;
int T,n,m,b[maxn], a[maxn];
struct Complex {
double x, y; // 实部和虚部 x + yi
Complex(double _x = 0.0, double _y = 0.0) {
x = _x;
y = _y;
}
Complex operator +(const Complex &b) const {
return Complex(x + b.x, y + b.y);
}
Complex operator -(const Complex &b) const {
return Complex(x - b.x, y - b.y);
}
Complex operator *(const Complex &b) const {
return Complex(x*b.x-y*b.y, x*b.y+y*b.x);
}
};
void change(Complex y[], int len) {
int i, j, k;
for(i = 1, j = len/2; i < len-1; i++) {
if(i < j) swap(y[i], y[j]);
k = len/2;
while(j >= k) { j -= k; k /= 2; }
if(j < k) j += k;
}
}
void fft(Complex y[], int len, int on) {
change(y, len);
for(int h = 2; h <= len; h <<= 1) {
Complex wn(cos(-on*2*PI/h), sin(-on*2*PI/h));
for(int j = 0; j < len; j += h) {
Complex w(1, 0);
for(int k = j; k < j + h/2; k++) {
Complex u = y[k];
Complex t = w*y[k+h/2];
y[k] = u + t;
y[k+h/2] = u - t;
w = w * wn;
}
}
}
if(on == -1) {
for(int i = 0; i < len; i++) y[i].x /= len;
}
}
Complex x1[maxn], x2[maxn], ans[maxn];
int main() {
scanf("%d",&T);
while(T--) {
scanf("%d", &n);
for(int i = 0; i < n; i++) scanf("%d", &a[i]);
scanf("%d", &m);
int len1 = n, len2 = 0, len = 1;
for(int i = 0; i < m; i++) scanf("%d", &b[i]), len2 = max(len2, b[i]);
while(len < len1 * 2 || len < len2 * 2) len <<= 1;
for(int i = 0; i < len2; i++) x2[i] = Complex(0, 0);
for(int i = 0; i < n; i++) x1[i] = Complex(a[i], 0);
for(int i = 0; i < m; i++) x2[b[i]-1] = Complex(1, 0);
for(int i = len1; i < len; i++) x1[i] = Complex(0, 0);
for(int i = len2; i < len; i++) x2[i] = Complex(0, 0);
fft(x1, len, 1);
fft(x2, len, 1);
for(int i = 0; i < len; i++) ans[i] = x1[i] * x2[i];
fft(ans, len, -1);
for(int i = 0; i < n; i++) ans[i].x += a[i];
len = len1 + len2 - 1;
int q; scanf("%d", &q);
while(q--) {
int id;
scanf("%d", &id);
if(id > len) printf("0\n");
else printf("%d\n", (int)round(ans[id-1].x));
}
}
return 0;
}