题目描述
呵呵,有一天我做了一个梦,梦见了一种很奇怪的电梯。大楼的每一层楼都可以停电梯,而且第 ii 层楼(1 \le i \le N1≤i≤N)上有一个数字 K_iKi(0 \le K_i \le N0≤Ki≤N)。电梯只有四个按钮:开,关,上,下。上下的层数等于当前楼层上的那个数字。当然,如果不能满足要求,相应的按钮就会失灵。例如: 3, 3, 1, 2, 53,3,1,2,5 代表了 K_iKi(K_1=3K1=3,K_2=3K2=3,……),从 11 楼开始。在 11 楼,按“上”可以到 44 楼,按“下”是不起作用的,因为没有 -2−2 楼。那么,从 AA 楼到 BB 楼至少要按几次按钮呢?
输入格式
共二行。
第一行为三个用空格隔开的正整数,表示 N, A, BN,A,B(1 \le N \le 2001≤N≤200,1 \le A, B \le N1≤A,B≤N)。
第二行为 NN 个用空格隔开的非负整数,表示 K_iKi。
输出格式
一行,即最少按键次数,若无法到达,则输出 -1
。
输入输出样例
输入 #1复制
5 1 5 3 3 1 2 5
输出 #1复制
3
说明/提示
对于 100 \%100% 的数据,1 \le N \le 2001≤N≤200,1 \le A, B \le N1≤A,B≤N,0 \le K_i \le N0≤Ki≤N。
代码:
#include<bits/stdc++.h>
using namespace std;
int n,a,b,c[201],d[201],ans;
int dx[2]={1,-1};
struct node{
int h;
int j;
};
void bfs(int x){
queue<node> q;
node p,t;
p.h=x,p.j=0;
q.push(p);
d[x]=1;
while(!q.empty()){//判断值是否为空
p=q.front();
if(p.h==b)
{
cout<<p.j;
ans=1;
return ;
}
for(int i=0;i<2;i++)
{
t.h=p.h+dx[i]*c[p.h];
if(t.h>=1&&t.h<=n&&!d[t.h])//判断t.h的值,再进行循环
{
t.j=p.j+1;
q.push(t);
d[t.h]=1;
}
}
q.pop();//删除
}
}
int main(){
memset(d,0,sizeof(c));
cin>>n>>a>>b;
for(int i=1;i<=n;i++)
cin>>c[i];
bfs(a);
if(!ans) cout<<"-1"<<endl;//无结果输出-1
return 0;
}