welby_fight的博客

Get Things Done

1001. 害死人不偿命的(3n+1)猜想 (15)

题目描述:

题目链接

卡拉兹(Callatz)猜想:

对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?

输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。

输出格式:输出从n计算到1需要的步数。

输入样例:
3
输出样例:
5

解题思路:


AC代码:

#include<stdio.h>
int main()
{
    int n,k = 0;
    scanf("%d",&n);
    while(n != 1)
    {
        if(n % 2 == 0)
        {
            n = n / 2;
        }
        else
        {
            n = (3*n + 1) / 2;
        }
        k++;
    }
    printf("%d\n",k);
    return 0;
}

注意事项:

阅读更多
个人分类: PAT-乙级
上一篇字母统计
下一篇题目标题
想对作者说点什么? 我来说一句

1001. 害死人偿命的(3n+1)猜想

2015年01月19日 346B 下载

没有更多推荐了,返回首页

关闭
关闭