辗转相除法

用了很久但没证明过,现在试下....

a = bq+r 其中(a,b,q>0 0<r<b)
(a,b) 为求其最大公因数
b|a   b整除a.

1.假设(a,b)=d d>0  m,n为正整数
a=dm  ,  b=dn
r=a-bq=dm-dnq=d(m-nq)
所以 d|r  d|b d<=(r,b)
设(r,b)=D
所以  D>=d

2.  D|b,D|r, 又a=bq+r
 所以 D|a D|b 
-> D|(a,b)  又以为(a,b)=b
-> D<=b

综合1,2所以D=b
得证  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值