用了很久但没证明过,现在试下....
a = bq+r 其中(a,b,q>0 0<r<b)
(a,b) 为求其最大公因数
b|a b整除a.
1.假设(a,b)=d d>0 m,n为正整数
a=dm , b=dn
r=a-bq=dm-dnq=d(m-nq)
所以 d|r d|b d<=(r,b)
设(r,b)=D
所以 D>=d
2. D|b,D|r, 又a=bq+r
所以 D|a D|b
-> D|(a,b) 又以为(a,b)=b
-> D<=b
综合1,2所以D=b
得证
a = bq+r 其中(a,b,q>0 0<r<b)
(a,b) 为求其最大公因数
b|a b整除a.
1.假设(a,b)=d d>0 m,n为正整数
a=dm , b=dn
r=a-bq=dm-dnq=d(m-nq)
所以 d|r d|b d<=(r,b)
设(r,b)=D
所以 D>=d
2. D|b,D|r, 又a=bq+r
所以 D|a D|b
-> D|(a,b) 又以为(a,b)=b
-> D<=b
综合1,2所以D=b
得证