Python实战:用逻辑回归构建自动识别垃圾邮件分类器

100 篇文章 ¥99.90 ¥299.90

Python实战:用逻辑回归构建自动识别垃圾邮件分类器

在当今互联网时代,每天都有数以万计的垃圾邮件被发送至我们的邮箱。这些垃圾邮件不仅浪费我们的时间,还带来了安全风险。为了有效过滤掉这些垃圾邮件,我们可以应用机器学习算法来构建一个自动分类器。

本文将通过使用逻辑回归算法来训练一个二元分类器,判断一封邮件是否为垃圾邮件。我们将使用Python编写代码实现该分类器,并通过对数据进行分析和可视化探索,加深对机器学习算法的理解。

首先,我们需要导入必要的库,如pandas、numpy等。我们还需要加载数据集。这里我们使用UCI Machine Learning Repository提供的SpamBase数据集,该数据集包括4601封经过手工标记的电子邮件,其中1813封被标记为垃圾邮件。每封邮件由57个特征,如字符出现频率、单词出现频率等组成。

import pandas as pd
import numpy as np

# 加载数据集
data =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编码实践

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值