Python实战:用逻辑回归构建自动识别垃圾邮件分类器
在当今互联网时代,每天都有数以万计的垃圾邮件被发送至我们的邮箱。这些垃圾邮件不仅浪费我们的时间,还带来了安全风险。为了有效过滤掉这些垃圾邮件,我们可以应用机器学习算法来构建一个自动分类器。
本文将通过使用逻辑回归算法来训练一个二元分类器,判断一封邮件是否为垃圾邮件。我们将使用Python编写代码实现该分类器,并通过对数据进行分析和可视化探索,加深对机器学习算法的理解。
首先,我们需要导入必要的库,如pandas、numpy等。我们还需要加载数据集。这里我们使用UCI Machine Learning Repository提供的SpamBase数据集,该数据集包括4601封经过手工标记的电子邮件,其中1813封被标记为垃圾邮件。每封邮件由57个特征,如字符出现频率、单词出现频率等组成。
import pandas as pd
import numpy as np
# 加载数据集
data =