Python中的常见分类模型性能指标

100 篇文章 ¥99.90 ¥299.90
本文介绍了在机器学习中评估分类模型性能的关键指标,包括召回率、特异度、精确度和灵敏度,并展示了如何使用Python的scikit-learn库进行计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python中的常见分类模型性能指标

在机器学习中,评估模型的性能是至关重要的。常见的分类模型性能指标包括召回率、特异度、精确度和灵敏度。下面将会详细介绍这些指标以及如何使用Python计算它们。

召回率(Recall)是指在所有实际为正例的样本中,被正确预测为正例的比例。可以用以下公式来计算:

R e c a l l = T P T P +

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编码实践

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值