使用CSPNeXt主干结构改进的YOLOv7单阶段目标检测器主干

本文介绍了采用CSPNeXt结构优化的YOLOv7单阶段目标检测器,该模型在COCO数据集上表现出高性能和低延迟。CSPNeXt结合了CSPNet和NeXtNet的优点,比DarkNet53更轻量且能提升信息提取效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用CSPNeXt主干结构改进的YOLOv7单阶段目标检测器主干

近年来目标检测一直是计算机视觉领域的热门研究方向之一。而单阶段目标检测器由于具有较快的检测速度和高效率的特点,受到了广泛关注。本文介绍的是一种基于CSPNeXt主干结构改进的YOLOv7单阶段目标检测器主干,该模型在COCO数据集上的实验结果表明其具有高性能和低延时的优点。

CSPNeXt主干结构是基于CSPNet和NeXtNet两种主干结构进行改造得到的。相比于这两种主干结构,CSPNeXt主干结构具有更少的参数和更好的性能。通过与传统的DarkNet53主干结构相比较,可以看出CSPNeXt主干结构相对更加轻量化,同时也能够提高网络的有效信息提取能力。因此,我们选择使用CSPNeXt主干结构作为YOLOv7单阶段目标检测器的主干结构。

下面是基于PyTorch框架实现的代码:

import torch.nn as nn

class YOLOv7(nn.Module):
    def __init__(self, input_channels, num_classes):
        super(YOLOv7, self).__init__()
        self.conv1 = nn.Conv2d(input_channels, 32, kernel_size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(32)
        self.conv2 = nn.Conv2d(32, 64, ke
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编码实践

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值