使用CSPNeXt主干结构改进的YOLOv7单阶段目标检测器主干
近年来目标检测一直是计算机视觉领域的热门研究方向之一。而单阶段目标检测器由于具有较快的检测速度和高效率的特点,受到了广泛关注。本文介绍的是一种基于CSPNeXt主干结构改进的YOLOv7单阶段目标检测器主干,该模型在COCO数据集上的实验结果表明其具有高性能和低延时的优点。
CSPNeXt主干结构是基于CSPNet和NeXtNet两种主干结构进行改造得到的。相比于这两种主干结构,CSPNeXt主干结构具有更少的参数和更好的性能。通过与传统的DarkNet53主干结构相比较,可以看出CSPNeXt主干结构相对更加轻量化,同时也能够提高网络的有效信息提取能力。因此,我们选择使用CSPNeXt主干结构作为YOLOv7单阶段目标检测器的主干结构。
下面是基于PyTorch框架实现的代码:
import torch.nn as nn
class YOLOv7(nn.Module):
def __init__(self, input_channels, num_classes):
super(YOLOv7, self).__init__()
self.conv1 = nn.Conv2d(input_channels, 32, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 64, ke