leetcode(41)------674. 最长连续递增序列

674. 最长连续递增序列
Given an unsorted array of integers, find the length of longest continuous increasing subsequence (subarray).

Example 1:

Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3. 
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4. 

Example 2:

Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1. 

Note: Length of the array will not exceed 10,000.


思路分析:
从前往后两个两个比较,如果符合升序,sum 就加 1,直到不符合的时候将sum添加到K列表里,最后返回最大的数。
Python代码实现:
class Solution(object):
    def findLengthOfLCIS(self, nums):
        if nums ==[]:
            return 0
        k = [1]
        sum = 1
        for i in range(1,len(nums)):
            if nums[i]>nums[i-1]:
                sum +=1
                if i+1 ==len(nums) :
                    return max(sum,max(k))              
            else:
                k.append(sum)
                sum = 1
        return max(sum, max(k))

2.看了别人的动态规划的答案,但是提交实现不了,自己又改了改。
思路:
举个栗子:nums=[1, 2, 3, 2 , 5]
k[0] = 1, k[1] = 2, k[2] =3, k[3] =1 k[ 4 ] = 2 (这一步是通过k[i+1] = max(k [ i + 1] ,k [ j ] + 1 )来实现的,如果后一个比前一个大,后一个就加一,如果后一个不比前一个大的话,从 1 开始。对应的k是[1 , 2 , 3 ,1 , 2],最后只要返回Max(k)就可以了。

两种方法其实大同小异。

Python代码实现:
class Solution(object):
    def findLengthOfLCIS(self, nums):
        if nums == []:
            return 0
        length = len(nums)     
        k = [1] * length
        for i in range(0, length - 1):
            for j in range(i, i + 1):
                if nums[i + 1] > nums[j]:
                    k[i + 1] = max(k[i + 1], k[j] + 1)
        return max(k)

673. 最长递增子序列的个数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值