CodeForces 201D

dp[i][j]当前位置为i状态为j的最小代价,超时
考虑到位置这个状态太大,费用很小
dp[i][j]当前状态为i代价为j的最小位置

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<map>
using namespace std;
const int N=5e5+100;
const int M=22;

char ss[M];
int fnext[N][M];
int id[M];
int n;
int aa[N],top;
void pri(int aa[N],int n){
    for(int i=0;i<n;i++){
        printf("%d%c",aa[i],i==n-1?'\n':' ');
    }
}

void getfnext(){
    for(int i=0;i<n;i++)id[i]=top;
    for(int i=top-1;i>=0;i--){
        for(int j=0;j<n;j++){
            fnext[i][j]=id[j];
        }
        id[aa[i]]=i;
    }
    //pri(id,n);
//    for(int i=0;i<top;i++){
//        pri(fnext[i],n);
//    }
}

int dp[1<<15][15*15];
int ms[25];
int ww[1<<15][15];
int cot[1<<15];
void getms(int n){
    for(int i=0;i<n;i++){
        ms[i]=1<<i;
    }
    int ed=1<<n;
    cot[0]=0;
    for(int i=1;i<ed;i++){
        cot[i]=cot[i-(i&-i)]+1;
    }
    //pri(cot,ed);
    for(int i=0;i<ed;i++){
        for(int j=0;j<n;j++){
            if(i&ms[j])continue;
            ww[i][j]=cot[i>>j];
        }
    }
    //printf("%d\n",ww[2][0]);
}

void getdp(){
    memset(dp,0x3f,sizeof(dp));
    for(int i=0;i<n;i++){
        dp[ms[i]][0]=id[i];
    }
    int ed=1<<n;
    for(int i=1;i<ed;i++){
        for(int j=0;j<n*n;j++){
            if(dp[i][j]>=top)continue;
            int x=dp[i][j];
            for(int k=0;k<n;k++){
                if(i&ms[k])continue;
                if(fnext[x][k]>=top)continue;
                dp[i|ms[k]][j+ww[i][k]]=min(dp[i|ms[k]][j+ww[i][k]],fnext[x][k]);
            }
        }
    }
}

map<string,int> mp;
void prin(int ans,int idx){
    if(ans!=n*n){
        printf("%d\n",idx+1);
        //printf("%dans\n",ans);
        ans=n*(n-1)/2-ans+1;
        printf("[:");
        while(ans--)printf("|");
        printf(":]\n");
    }
    else {
        printf("Brand new problem!\n");
    }
}

int main(){
    #ifdef DouBi
    freopen("in.cpp","r",stdin);
    #endif // DouBi

    while(scanf("%d",&n)!=EOF){
        mp.clear();
        for(int i=0;i<n;i++){
            scanf("%s",ss);
            mp[ss]=i+1;
        }
        getms(n);

        int m;scanf("%d",&m);
        int ans=n*n,idx;
        for(int i=0;i<m;i++){
            int k;scanf("%d",&k);
            top=0;
            while(k--){
                scanf("%s",ss);
                if(mp[ss]){
                    aa[top++]=mp[ss]-1;
                }
            }
            //pri(aa,top);
            getfnext();
            getdp();
            int ed=1<<n;
            for(int j=0;j<n*n;j++)if(dp[ed-1][j]<top){
                if(j<ans){
                    ans=j,idx=i;
                }
            }
        }
        prin(ans,idx);
    }
    return 0;
}
CodeForces - 616D是一个关于找到一个序列中最长的第k好子段的起始位置和结束位置的问题。给定一个长度为n的序列和一个整数k,需要找到一个子段,该子段中不超过k个不同的数字。题目要求输出这个序列最长的第k好子段的起始位置和终止位置。 解决这个问题的方法有两种。第一种方法是使用尺取算法,通过维护一个滑动窗口来记录\[l,r\]中不同数的个数。每次如果这个数小于k,就将r向右移动一位;如果已经大于k,则将l向右移动一位,直到个数不大于k。每次更新完r之后,判断r-l+1是否比已有答案更优来更新答案。这种方法的时间复杂度为O(n)。 第二种方法是使用枚举r和双指针的方法。通过维护一个最小的l,满足\[l,r\]最多只有k种数。使用一个map来判断数的种类。遍历序列,如果当前数字在map中不存在,则将种类数sum加一;如果sum大于k,则将l向右移动一位,直到sum不大于k。每次更新完r之后,判断i-l+1是否大于等于y-x+1来更新答案。这种方法的时间复杂度为O(n)。 以上是两种解决CodeForces - 616D问题的方法。具体的代码实现可以参考引用\[1\]和引用\[2\]中的代码。 #### 引用[.reference_title] - *1* [CodeForces 616 D. Longest k-Good Segment(尺取)](https://blog.csdn.net/V5ZSQ/article/details/50750827)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Codeforces616 D. Longest k-Good Segment(双指针+map)](https://blog.csdn.net/weixin_44178736/article/details/114328999)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值