Codeforces21D

为什么没写个Floyd写个Spfa。。。。
度为奇数的点两两匹配,这样所有的点的度数就都为偶数了,
然后就是欧拉回路了,
然后求个最优匹配

#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
using namespace std;
const int N=20;
const int M=2000+10;
const int inf=0x3f3f3f3f;
typedef __int64 LL;
struct Edge {
    int v,next,w;
    Edge(int v=-1,int next=-1,int w=-1):v(v),next(next),w(w){}
}e[M*2];
int head[N],total;
void adde(int u,int v,int w){
    e[total]=Edge(v,head[u],w);head[u]=total++;
}
void init(){
    memset(head,-1,sizeof(head));total=0;
}
int vis[N],dis[N];
queue<int> qq;
void spfa(int s){
    memset(vis,0,sizeof(vis));memset(dis,0x3f,sizeof(dis));
    dis[s]=0;vis[s]=1;
    qq.push(s);
    while(!qq.empty()){
        int u=qq.front();qq.pop();
        vis[u]=0;
        for(int i=head[u];i!=-1;i=e[i].next){
            int v=e[i].v;
            if(dis[v]>dis[u]+e[i].w){
                dis[v]=dis[u]+e[i].w;
                if(!vis[v]){
                    vis[v]=1;qq.push(v);
                }
            }
        }
    }
}
int du[N];
int sta[N*N],top,ans[N*N];
int mp[N][N];
int f[N];
int Find(int x){
    if(x==f[x])return x;
    return f[x]=Find(f[x]);
}
int dp[1<<20];
int aa[M],bb[M];
int main(){
    #ifdef DouBi
    freopen("in.cpp","r",stdin);
    #endif // DouBi
    int n,m;while(scanf("%d%d",&n,&m)!=EOF){
        init();
        int sum=0;
        memset(du,0,sizeof(du));
        for(int i=1;i<=n;i++)f[i]=i;
        for(int i=0;i<m;i++){
            int a,b,c;scanf("%d%d%d",&a,&b,&c);
            aa[i]=a,bb[i]=b;
            sum+=c;
            du[a]++;du[b]++;
            adde(a,b,c);adde(b,a,c);
            f[Find(a)]=Find(b);
        }
        int cnt=0;
        for(int i=0;i<m;i++){
            if(Find(aa[i])!=Find(1))cnt++;
        }
        if(cnt){
            printf("-1\n");continue;
        }
        top=0;
        for(int i=1;i<=n;i++){
            if(du[i]%2==1){
                sta[top++]=i;
            }
        }
        for(int i=0;i<top;i++){
            spfa(sta[i]);
            for(int j=0;j<top;j++){
                mp[i][j]=dis[sta[j]];
            }
        }
//        for(int i=0;i<top;i++)printf("%d ",sta[i]);printf("\n");
//        for(int i=0;i<top;i++){
//            for(int j=0;j<top;j++)printf("%d ",mp[i][j]);printf("\n");
//        }
        n=top;top=0;
        for(int i=0;i<n;i++){
            for(int j=i+1;j<n;j++){
                sta[top]=(1<<i)|(1<<j);
                ans[top++]=mp[i][j];
            }
        }
        dp[0]=0;
        for(int i=1;i<(1<<n);i++){
            dp[i]=inf;
            for(int j=0;j<top;j++){
                if((i&sta[j])==sta[j]){
                    dp[i]=min(dp[i^sta[j]]+ans[j],dp[i]);
                }
            }
            //printf("%d %d\n",i,dp[i]);
        }
        printf("%d\n",dp[(1<<n)-1]+sum);
    }
    return 0;
}
CodeForces - 616D是一个关于找到一个序列中最长的第k好子段的起始位置和结束位置的问题。给定一个长度为n的序列和一个整数k,需要找到一个子段,该子段中不超过k个不同的数字。题目要求输出这个序列最长的第k好子段的起始位置和终止位置。 解决这个问题的方法有两种。第一种方法是使用尺取算法,通过维护一个滑动窗口来记录\[l,r\]中不同数的个数。每次如果这个数小于k,就将r向右移动一位;如果已经大于k,则将l向右移动一位,直到个数不大于k。每次更新完r之后,判断r-l+1是否比已有答案更优来更新答案。这种方法的时间复杂度为O(n)。 第二种方法是使用枚举r和双指针的方法。通过维护一个最小的l,满足\[l,r\]最多只有k种数。使用一个map来判断数的种类。遍历序列,如果当前数字在map中不存在,则将种类数sum加一;如果sum大于k,则将l向右移动一位,直到sum不大于k。每次更新完r之后,判断i-l+1是否大于等于y-x+1来更新答案。这种方法的时间复杂度为O(n)。 以上是两种解决CodeForces - 616D问题的方法。具体的代码实现可以参考引用\[1\]和引用\[2\]中的代码。 #### 引用[.reference_title] - *1* [CodeForces 616 D. Longest k-Good Segment(尺取)](https://blog.csdn.net/V5ZSQ/article/details/50750827)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Codeforces616 D. Longest k-Good Segment(双指针+map)](https://blog.csdn.net/weixin_44178736/article/details/114328999)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值