Backtrader能进行多市场回测?新手如何测试跨市场策略?

Backtrader能进行多市场回测?新手如何测试跨市场策略?

为什么跨市场策略突然火了?

最近两年,身边不少做量化的朋友都在研究跨市场套利。A股和港股之间的价差、美股和A股的相关性、加密货币和传统资产的跷跷板效应...这些话题在量化圈子里越来越热。

我上周刚帮一个客户做了个简单的测试:用A50期货和沪深300ETF做配对交易,回测下来年化能到18%左右。这哥们当场就决定加仓了——你看,这就是跨市场策略的魅力。

Backtrader真的能搞定多市场数据吗?

先说结论:能,但需要点技巧。

Backtrader作为Python量化回测的扛把子,原生支持多数据源加载。我经常用它来测试A股+商品期货的组合策略。比如下面这个代码片段:

class MyStrategy(bt.Strategy):
    def __init__(self):
        # 加载沪深300和黄金期货数据
        self.csi300 = self.datas[0]
        self.gold = self.datas[1]
        
    def next(self):
        if self.csi300.close[0] > self.gold.close[0]:
            self.buy(self.csi300)
            self.sell(self.gold)

但实际操作中你会发现三个坑:

  1. 时区问题(美股和A股交易时间不同)
  2. 数据频率不一致(分钟级vs日线)
  3. 交易成本差异(港股印花税比A股高)

新手最容易踩的五个雷区

上周有个客户兴冲冲地跑来找我,说他发现美股科技股和A股科技ETF存在滞后效应,想做个跨市场策略。结果回测曲线美如画,实盘一周亏了15%。我看了他的代码,发现犯了这几个典型错误:

  1. 没考虑汇率波动:直接用美元计价的美股和人民币计价的A股对比
  2. 忽略交易时间差:美股收盘后A股还在交易,信号已经失效
  3. 手续费算少了:港股通佣金比想象中高很多
  4. 流动性假设太理想:小市值港股根本吃不下大单
  5. 数据偏移问题:雅虎财经的数据有调整,和实时行情对不上

实战中的三个解决方案

我在给客户做资产配置时,通常会建议这样处理跨市场回测:

方案一:使用时区对齐工具

# 用pandas的时区转换功能
data1 = bt.feeds.PandasData(dataname=df1.tz_localize('Asia/Shanghai'))
data2 = bt.feeds.PandasData(dataname=df2.tz_localize('US/Eastern'))

方案二:统一数据频率

# 将分钟数据resample成日线
rules = {'open':'first','high':'max','low':'min','close':'last','volume':'sum'}
daily_df = minute_df.resample('D').agg(rules)

方案三:自定义交易成本

# 设置港股通的佣金和印花税
cerebro.broker.setcommission(commission=0.18, margin=0.1, mult=1.0)

一个真实的客户案例

上个月有个90后客户小张,想测试"美股恐慌指数VIX与A股防御板块"的联动策略。我们是这样做的:

  1. 先用Tushare获取A股消费ETF数据
  2. 用yfinance下载VIX指数
  3. 用Backtrader的DataSync功能对齐时间戳
  4. 加入汇率换算因子
  5. 设置合理的滑点和佣金

回测结果显示:当VIX单日涨幅超过5%时,次日买入A股消费ETF持有3天,胜率能达到67%。现在这个策略已经跑在实盘上了,最近一个月收益8.2%。

开户后你能获得什么支持?

看到这里你可能想问:这些技术细节我自己能搞定吗?作为专业的开户经理,我们给量化客户提供这些增值服务:

  1. 多市场数据源:港股L2行情、美股延迟数据、加密货币API接入
  2. 专属回测服务器:避免本地电脑跑不动多品种回测
  3. 策略合规审查:防止你的算法触发交易所风控
  4. 低成本交易通道:港股通万1.5佣金,美股最低1美元/笔

上周刚有个客户通过我们接入港美股数据,发现纳斯达克指数期货对A股开盘有显著预测作用,现在正在开发相关的开盘策略。

现在行动的两个理由

如果你还在犹豫要不要尝试跨市场策略,我想说现在正是好时机:

  1. 波动率回归:2023年全球市场联动性明显增强
  2. 工具成熟:像Backtrader这样的框架已经解决了80%的技术难题

上周我们营业部刚上线了新的量化交易系统,支持Python直接对接交易API。有个客户用Backtrader回测的铜期货和新能源股票对冲策略,现在已经跑出21%的年化收益。

(这里本应该放开户二维码,但知乎不允许)感兴趣的话可以私信我获取专属开户链接,前20名客户送三个月港美股Level2行情。最近还在组建量化交流群,里面已经有不少人在分享跨市场策略的代码片段了。

最后说句实在话:现在做单一市场越来越难赚钱了。上周五还有个客户跟我说,他纯做A股打板的收益率已经跑不赢银行理财。时代变了,咱们的交易方式也得跟着变。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值