ACID原则
事务是由一组SQL语句组成的逻辑处理单元,事务具有4属性,通常称为事务的ACID属性。
-
原子性
(Actomicity):事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行。 -
一致性
(Consistent):在事务开始和完成时,数据都必须保持一致状态。这意味着所有相关的数据规则都必须应用于事务的修改,以操持完整性;事务结束时,所有的内部数据结构(如B树索引或双向链表)也都必须是正确的。eg:有3个人进行转账操作,为了保证一致性(即3个人 的账号金额总数不变),那在我写代码的时候,如果写了代码:A=A-5000,此时数据是不一致的。那就必须要写上,B=B+5000,或者是C=C+5000,这样的代码才能保证了数据库的一致性状态。
-
隔离性
(Isolation):数据库系统提供一定的隔离机制,保证事务在不受外部并发操作影响的“独立”环境执行。这意味着事务处理过程中的中间状态对外部是不可见的,反之亦然。 -
持久性
(Durable):事务完成之后,它对于数据的修改是永久性的,即使出现系统故障也能够保持
CAP理论
C:Consistency,数据在多个副本中能保持一致的状态。
A:Availability,整个系统在任何时刻都能提供可用的服务,通常达到99.99%四个九可以称为高可用
P:Partition tolerance,分区容错性,在分布式中,由于网络的原因无法避免有时候出现数据不一致的情况,系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择,换句话说,系统可以跨网络分区线性的伸缩和扩展。
CAP理论的核心:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,最多只能同时较好的满足两个
-
CA:单点集群,满足一致性,可用性的系统,通常在可扩展上不太强大。应用:传统的Oracle数据库
-
CP:满足一致性,分区容错性的系统,通常性能不是特别高。应用:Redis,MongoDB,银行
-
AP:满足可用性,分区容错性,通常可能对一致性要求低一些。应用:大多数网站架构的选择
CAP理论就是说在分布式存储系统中,最多只能实现上面的两个。而由于当前的网络硬件肯定会出现延迟丢包等问题。所以分区容错性是我们必须需要实现的。