【题目描述】
任何一个正整数都可以用2的幂次方表示。例如:
137=2^7+2^3+2^0
同时约定方次用括号来表示,即a^b可表示为a(b)。由此可知,137可表示为:
2(7)+2(3)+2(0)
进一步:7=2^2+2+2^0(2^1用2表示)
3=2+2^0
所以最后137可表示为:
2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:
1315=2^10+2^8+2^5+2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
【输入】
一个正整数n(n≤20000)。
【输出】
一行,符合约定的n的0,2表示(在表示中不能有空格)。
【输入样例】
137
【输出样例】
2(2(2)+2+2(0))+2(2+2(0))+2(0)
【参考代码】
#include<cmath>
#include<iostream>
using namespace std;
void mi(int n){
if(n<=4){
switch(n){
case 0:return;
case 1:cout<<"2(0)"; break;
case 2:cout<<"2"; break;
case 3:cout<<"2+2(0)"; break;
case 4:cout<<"2(2)"; break;
}
}
else{
int num = 1;
while(pow(2,num)<=n)
num++;
cout<<"2(";
mi(num-1);
cout<<")";
if(n!=pow(2,num-1))
cout<<"+";
mi(n-pow(2,num-1));
}
}
int main(){
int n;
cin>>n;
mi(n);
return 0;
}