fminunc函数

options = optimset('GradObj', 'on', 'MaxIter', '100');
initialTheta = zeros(2,1);
[optTheta, functionVal, exitFlag] = fminunc(@costFunction, initialTheta, options);

fminunc表示Octave里无约束最小化函数,调用这个函数时,需要传入一个存有配置信息的变量options。上面的代码中,我们的设置项中’GradObj’, ‘on’,代表设置梯度目标参数为打开状态(on),这也意味着你现在确实要给这个算法提供一个梯度。’MaxIter’, ‘100’代表设置最大迭代次数为100次。initialTheta代表我们给出的一个θ的猜测初始值。

然后我们调用fminunc这个函数,传入三个参数,其中第一个参数@costFunction这里的@符号代表指向之前我们定义的costFunction函数的指针。后面两个参数分别是我们定义的thetatheta初始值和配置信息options。

当我们调用这个fminunc函数时,它会自动的从众多高级优化算法中挑选一个来使用(你也可以把它当做一个可以自动选择合适的学习速率aa的梯度下降算法)。

最终我们会得到三个返回值,分别是满足最小化代价函数J(θ)的θ值optTheta,costFunction中定义的jVal的值functionVal,以及标记是否已经收敛的状态值exitFlag,如果已收敛,标记为1,否则为0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值