机器学习
文章平均质量分 50
Z pz
很懒的一只博主 不常更新 更新就更一些python的日常数据处理操作~~~~~~
展开
-
python cross_val_score
Evaluate multiple scores on sklearn cross_val_scorehttps://stackoverflow.com/questions/35876508/evaluate-multiple-scores-on-sklearn-cross-val-scoreCross-validation: evaluating estimator performancehttps://scikit-learn.org/stable/modules/cross_validation原创 2021-02-05 09:12:03 · 285 阅读 · 1 评论 -
建模时二值化处理oneHotEncoder与get_dummies要点
二值化处理几个注意点:若用oneHotEncoder,注意该函数无法识别NA类型的,因为NA不是整数型,所以需要在二值化前对NA进行缺失值填补;如果用get_dummies函数,a = pd.DataFrame(['YES','NO','YES','NO','NO','YES'],columns =['FEE'])b = pd.get_dummies(a)返回值b,是uint8格式,无法用于大多数建模的输入。需要转换。b.info()<class ‘pandas.cor原创 2020-08-26 01:02:39 · 428 阅读 · 0 评论 -
KNN参数设置小实验——基于mglearn人工生成数据集(结果可视化)
KNN的小实验part 1采用mglearn包中的make_forge来训练~make_forge数据集turple类型,是一个二分的数据集,藏着两个array一个array是(26,2)的X一个array是(26,1)的ymglearn可通过加载datasets获取人工生成的数据,也就是前缀带make的,而本文的make_forge就是人工生成的,用于学习KNN的~我们先导入基本的包!import numpy as npimport matplotlib.pyplot as plti原创 2020-06-09 21:37:57 · 1077 阅读 · 0 评论