gml是什么

1969年,Charles Goldfarb博士领导IBM团队开发了通用标记语言(GML)并进一步发展为标准通用标记语言(SGML)。SGML作为HTML和XML的前身,在文档结构标记方面奠定了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1969年,Charles Goldfarb博士带领ibm公司的一个小组开发出gml(Generalized Markup Language,通用标记语言),并在随后有开发了sgml(standard generalized markup language,标准通用标记语言)。sgml是html和xml的父语言。 

### SBM-GML模型的定义与用途 SBM-GML(Slacks-Based Measure - Geometric Mean Luenberger)模型是一种结合了SBM模型和GML(Geometric Mean Luenberger)指数的效率评价方法。该模型不仅能够衡量决策单元(DMU)的技术效率,还能进一步分析生产率的变化趋势[^1]。 #### 定义 SBM-GML模型基于方向距离函数(DDF),通过引入非径向、非角度的距离测度来评估决策单元的效率。与传统的CCR或BCC模型不同,SBM模型考虑了投入和产出的松弛变量,从而避免了对比例假设的依赖。此外,GML指数扩展了SBM模型的应用范围,使其能够动态监测生产前沿面的变化,并计算出技术进步或退步的程度[^2]。 数学上,SBM-GML模型可以表示为以下优化问题: ```python # SBM-GML模型的线性规划形式 from pulp import * # 定义问题 model = LpProblem("SBM_GML_Model", LpMinimize) # 决策变量 theta = LpVariable("theta", 0, None) # 效率值 s_plus = [LpVariable(f"s_plus_{i}", 0, None) for i in range(m)] # 产出松弛变量 s_minus = [LpVariable(f"s_minus_{j}", 0, None) for j in range(n)] # 投入松弛变量 # 目标函数 model += theta + (1 / (m + n)) * sum(s_plus) + (1 / (m + n)) * sum(s_minus) # 约束条件 for k in range(K): # K为决策单元数量 model += sum(lambda[k][j] * x[j] for j in range(n)) <= x_0 - s_minus[k] model += sum(lambda[k][i] * y[i] for i in range(m)) >= y_0 + s_plus[k] # 求解 model.solve() ``` 在上述代码中,`theta`表示效率值,`s_plus`和`s_minus`分别表示产出和投入的松弛变量,`lambda`为权重向量,用于确定生产前沿面的位置[^3]。 #### 用途 SBM-GML模型广泛应用于能源经济、环境科学以及IT领域的效率评价中。以下是其主要用途: 1. **技术效率评估**:通过计算松弛变量,SBM-GML模型能够识别投入过度或产出不足的具体领域,为决策者提供改进建议。 2. **生产率变化分析**:结合GML指数,该模型可以量化技术进步或退步的程度,帮助理解生产率随时间的变化趋势。 3. **非期望产出处理**:在环境科学领域,SBM-GML模型能够同时考虑期望产出(如GDP)和非期望产出(如污染排放),从而更全面地评估决策单元的综合表现[^1]。 在IT领域,SBM-GML模型可用于以下场景: - 数据中心运营效率评估:通过分析电力消耗、计算能力等指标,优化资源分配。 - 云计算服务性能评价:结合成本、服务质量等多维因素,评估不同云服务商的效率。 - 软件开发项目管理:通过衡量开发周期、缺陷率等指标,改进项目管理流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值