中缀表达式-前缀表达式-后缀表达式

中缀表达式(中缀记法)
中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间。中缀表达式是人们常用的算术表示方法。
虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中缀表达式却是很复杂的,因此计算表达式的值时,通常需要先将中缀表达式转换为前缀或后缀表达式,然后再进行求值。对计算机来说,计算前缀或后缀表达式的值非常简单。

前缀表达式(前缀记法、波兰式)
前缀表达式的运算符位于操作数之前。

前缀表达式的计算机求值:
从右至左扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素 op 次顶元素),并将结果入栈;重复上述过程直到表达式最左端,最后运算得出的值即为表达式的结果。
例如前缀表达式“- × + 3 4 5 6”:
(1) 从右至左扫描,将6、5、4、3压入堆栈;
(2) 遇到+运算符,因此弹出3和4(3为栈顶元素,4为次顶元素,注意与后缀表达式做比较),计算出3+4的值,得7,再将7入栈;
(3) 接下来是×运算符,因此弹出7和5,计算出7×5=35,将35入栈;
(4) 最后是-运算符,计算出35-6的值,即29,由此得出最终结果。
可以看出,用计算机计算前缀表达式的值是很容易的。

将中缀表达式转换为前缀表达式:
遵循以下步骤:
(1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
(2) 从右至左扫描中缀表达式;
(3) 遇到操作数时,将其压入S2;
(4) 遇到运算符时,比较其与S1栈顶运算符的优先级:
(4-1) 如果S1为空,或栈顶运算符为右括号“)”,则直接将此运算符入栈;
(4-2) 否则,若优先级比栈顶运算符的较高或相等,也将运算符压入S1;
(4-3) 否则,将S1栈顶的运算符弹出并压入到S2中,再次转到(4-1)与S1中新的栈顶运算符相比较;
(5) 遇到括号时:
(5-1) 如果是右括号“)”,则直接压入S1;
(5-2) 如果是左括号“(”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到右括号为止,此时将这一对括号丢弃;
(6) 重复步骤(2)至(5),直到表达式的最左边;
(7) 将S1中剩余的运算符依次弹出并压入S2;
(8) 依次弹出S2中的元素并输出,结果即为中缀表达式对应的前缀表达式。
例如,将中缀表达式“1+((2+3)×4)-5”转换为前缀表达式的过程如下:
扫描到的元素S2(栈底->栈顶)S1 (栈底->栈顶)说明
55数字,直接入栈
-5-S1为空,运算符直接入栈
)5- )右括号直接入栈
45 4- )数字直接入栈
×5 4- ) ×S1栈顶是右括号,直接入栈
)5 4- ) × )右括号直接入栈
35 4 3- ) × )数字
+5 4 3- ) × ) +S1栈顶是右括号,直接入栈
25 4 3 2- ) × ) +数字
(5 4 3 2 +- ) ×左括号,弹出运算符直至遇到右括号
(5 4 3 2 + ×-同上
+5 4 3 2 + ×- +优先级与-相同,入栈
15 4 3 2 + × 1- +数字
到达最左端5 4 3 2 + × 1 + -S1中剩余的运算符

因此结果为“- + 1 × + 2 3 4 5”。

后缀表达式(后缀记法、逆波兰式)
后缀表达式与前缀表达式类似,只是运算符位于操作数之后。

后缀表达式的计算机求值:
与前缀表达式类似,只是顺序是从左至右:
从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素 op 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果。
例如后缀表达式“3 4 + 5 × 6 -”:
(1) 从左至右扫描,将3和4压入堆栈;
(2) 遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素,注意与前缀表达式做比较),计算出3+4的值,得7,再将7入栈;
(3) 将5入栈;
(4) 接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
(5) 将6入栈;
(6) 最后是-运算符,计算出35-6的值,即29,由此得出最终结果。

将中缀表达式转换为后缀表达式:
与转换为前缀表达式相似,遵循以下步骤:
(1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
(2) 从左至右扫描中缀表达式;
(3) 遇到操作数时,将其压入S2;
(4) 遇到运算符时,比较其与S1栈顶运算符的优先级:
(4-1) 如果S1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
(4-2) 否则,若优先级比栈顶运算符的高,也将运算符压入S1(注意转换为前缀表达式时是优先级较高或相同,而这里则不包括相同的情况);
(4-3) 否则,将S1栈顶的运算符弹出并压入到S2中,再次转到(4-1)与S1中新的栈顶运算符相比较;
(5) 遇到括号时:
(5-1) 如果是左括号“(”,则直接压入S1;
(5-2) 如果是右括号“)”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到左括号为止,此时将这一对括号丢弃;
(6) 重复步骤(2)至(5),直到表达式的最右边;
(7) 将S1中剩余的运算符依次弹出并压入S2;
(8) 依次弹出S2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式(转换为前缀表达式时不用逆序)。

例如,将中缀表达式“1+((2+3)×4)-5”转换为后缀表达式的过程如下:

扫描到的元素S2(栈底->栈顶)S1 (栈底->栈顶)说明
11数字,直接入栈
+1+S1为空,运算符直接入栈
(1+ (左括号,直接入栈
(1+ ( (同上
21 2+ ( (数字
+1 2+ ( ( +S1栈顶为左括号,运算符直接入栈
31 2 3+ ( ( +数字
)1 2 3 ++ (右括号,弹出运算符直至遇到左括号
×1 2 3 ++ ( ×S1栈顶为左括号,运算符直接入栈
41 2 3 + 4+ ( ×数字
)1 2 3 + 4 ×+右括号,弹出运算符直至遇到左括号
-1 2 3 + 4 × +--与+优先级相同,因此弹出+,再压入-
51 2 3 + 4 × + 5-数字
到达最右端1 2 3 + 4 × + 5 -S1中剩余的运算符

因此结果为“1 2 3 + 4 × + 5 -”(注意需要逆序输出)。

中缀表达式是我们常见的数学表达式的一种写法,它是以操作符位于操作数的两侧的形式表示计算顺序。而前缀表达式后缀表达式中缀表达式的另外两种等价的写法。 将中缀表达式转换为前缀表达式方法如下: 1. 从右到左遍历中缀表达式的每个字符。 2. 如果字符是操作数,直接输出到前缀表达式。 3. 如果字符是操作符,有两种情况: - 如果操作符的优先级比操作符的优先级高,将操作符。 - 如果操作符的优先级比操作符的优先级低或相等,弹出操作符,并将弹出的操作符操作数组合为一个前缀表达式,再将该前缀表达式。 4. 当遍历完中缀表达式后,将中的操作符依次弹出,并将每个弹出的操作符操作数组合为一个前缀表达式,再将该前缀表达式。 5. 最后得到的顶即为转换后的前缀表达式。 将中缀表达式转换为后缀表达式方法基本相同,只需将步骤3中操作符的优先级比较符号调整为"低或相等"即可。 转换中缀表达式后缀表达式方法如下: 1. 从左到右遍历中缀表达式的每个字符。 2. 如果字符是操作数,直接输出到后缀表达式。 3. 如果字符是操作符,有两种情况: - 如果操作符的优先级比操作符的优先级高或为空,将操作符。 - 如果操作符的优先级比操作符的优先级低或相等,弹出操作符,并将弹出的操作符操作数组合为一个后缀表达式,再将该后缀表达式。 4. 当遍历完中缀表达式后,将中的操作符依次弹出,并将每个弹出的操作符操作数组合为一个后缀表达式,再将该后缀表达式。 5. 最后得到的顶即为转换后的后缀表达式。 通过上述步骤,我们可以将中缀表达式转换为前缀和后缀表达式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值