k0s集群部署kubesphere

k0s离线包制作

通过docker制作k0s的镜像包

k0s airgap list-images | xargs -I{} docker pull {}
docker image save $(k0s airgap list-images | xargs) -o k0s-airgap-bundle-v1.31.2+k0s.0-amd64.tar

部署

1、使用k0sctl部署集群(只能部署多节点集群)

首先把离线镜像包存放节点的指定目录

mkdir -p /var/lib/k0s/images
cp k0s-airgap-bundle-v1.31.2+k0s.0-amd64.tar /var/lib/k0s/images/k0s-airgap-bundle-v1.31.2+k0s.0-amd64.tar

然后使用k0sctl部署集群,生成配置文件

k0sctl init > k0sctl.yaml

修改配置文件适配部署的环境

执行以下命令部署集群

k0sctl apply --config k0sctl.yaml

访问集群

k0sctl kubeconfig > kubeconfig
kubectl get pods --kubeconfig kubeconfig -A

注:k0sctl只能添加节点,不能删除节点

2、使用k0s二进制部署集群

单节点部署controllerworker节点

sudo k0s install controller --single
sudo k0s install controller --single -e ETCD_UNSUPPORTED_ARCH=arm #arm环境部署

可以强制重新部署

sudo k0s install controller --single --force
sudo systemctl daemon-reload

启动k0s服务

sudo k0s start
sudo k0s status #检测服务状态
sudo k0s kubectl get nodes #命令行使用

卸载k0s服务

sudo k0s stop
sudo k0s reset
reboot #重启节点清空iptables等残留

只部署controller节点

mkdir -p /etc/k0s
k0s config create > /etc/k0s/k0s.yaml
sudo k0s install controller -c /etc/k0s/k0s.yaml
sudo k0s start

创建token

sudo k0s token create --role=worker --expiry=100h > token-file
sudo k0s token create --role=controller --expiry=1h > token-file

加入controller或者worker节点

sudo k0s install controller --token-file /path/to/token/file -c /etc/k0s/k0s.yaml
sudo k0s install worker --token-file /path/to/token/file
sudo k0s start

检测和访问集群

sudo k0s status
sudo k0s kubectl get nodes
sudo cat /var/lib/k0s/pki/admin.conf

k0s上部署kubesphere

首先安装和配置helm v3

curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash
mkdir ~/.kube
cp -r  /var/lib/k0s/pki/admin.conf ~/.kube/config

然后,部署kubesphereks-core

helm upgrade --install -n kubesphere-system --create-namespace ks-core ./ks-core-1.1.3.tgz --debug --wait --set global.imageRegistry=swr.cn-southwest-2.myhuaweicloud.com/ks --set extension.imageRegistry=swr.cn-southwest-2.myhuaweicloud.com/ks

安装完毕。

卸载命令如下

helm del -n kubesphere-system ks-core
<think>好的,用户问的是“Ks8的定义”或者“Ks8是什么”。首先,我需要弄清楚用户提到的“Ks8”具体指什么。根据提供的引用内容,有几个可能的解释: 首先查看引用[1]到[3],这些内容提到了KS8集群的搭建、数据管理以及Kubernetes网络组件。这里的“KS8”看起来像是拼写错误,可能用户实际是指K8s,即Kubernetes的缩写,因为K8s是常见的简称(K和s之间有8个字母)。引用中提到的KubeSpherekubesphere)是一个基于Kubernetes的开源容器平台,可能用户在安装过程中遇到相关术语,将K8s误写为Ks8。 另外,引用[4]和[5]提到了Kolmogorov-Smirnov (KS)检验,这是一个统计学中的方法,用于评估两个样本分布是否相同。KS值在这里可能被用户误解为Ks8,但数字“8”可能属于打字错误,或者是用户混淆了术语。 接下来需要确认用户的问题指向哪一种情况。用户的问题可能有两种情况: 1. **Kubernetes相关**:如果用户指的是K8s(Kubernetes),那么需要解释K8s的定义和作用,并联系引用中的KS集群搭建内容。 2. **统计学中的KS检验**:如果用户确实想了解KS检验中的“Ks8”,但根据引用中的代码示例,KS检验通常不涉及数字8,因此可能属于拼写错误。 进一步分析,用户提供的引用[1]-[3]主要涉及Kubernetes集群的搭建和管理,而引用[4]-[5]是关于KS检验的Python实现。因此用户可能在同时接触这两个领域,导致混淆。但问题中的“Ks8”更可能是指K8s,尤其是引用中多次提到KS8集群,可能用户将K8s错误地写成了Ks8。 需要验证用户是否有拼写错误的可能性。例如,Kubernetes常缩写为K8s,而“Ks8”可能是打字顺序错误。此外,引用中提到的“KS8集群搭建”可能文档本身的拼写错误,或者用户复制时的错误。这种情况下,正确的解释应围绕Kubernetes展开,并指出可能的拼写误解。 同时,考虑到引用[4]和[5]中的KS检验,虽然相关,但用户的问题可能并不在此,因为KS检验中的KS没有数字8。但为了全面性,回答中可能需要简要提及,但主要应集中在Kubernetes上。 因此,回答的结构应该是: 1. 指出用户可能指的是K8s(Kubernetes),并解释其定义和用途。 2. 提到KS检验作为统计学方法,但指出可能存在的混淆。 3. 根据提供的引用,详细说明Kubernetes集群搭建和管理的相关内容,如KubeSphere的作用。 4. 提供相关问题,帮助用户进一步了解Kubernetes或KS检验。 需要确保回答清晰,帮助用户明确可能的错误,并引导到正确的知识点。同时,引用相关段落支持解释,例如引用[1]关于KS8集群搭建的内容,实际是Kubernetes集群,结合KubeSphere平台。</think>### Ks8 的定义解析 根据上下文分析,"Ks8" 可能存在两种解读方向: --- #### **1. 大概率场景:Kubernetes(K8s)的拼写变体** **K8s** 是 **Kubernetes** 的缩写(K与s之间有8个字母),它是用于自动化容器化应用部署、扩展和管理的开源平台[^3]。在引用[1]-[3]中提到的 "KS8集群" 实际应为 **K8s集群**,可能是文档的拼写误差或用户误写。 - **核心功能**: - 自动化容器编排(如Docker容器) - 负载均衡、服务发现、存储管理 - 支持多云和混合云环境 - **示例场景**: 通过引用[1]中的 `Vagrantfile` 搭建虚拟机集群,使用 `KubeKey` 工具安装 Kubernetes 并集成 KubeSphere(容器管理平台)[^1]。 --- #### **2. 小概率场景:统计学中的KS检验(Kolmogorov-Smirnov Test)** **KS值** 用于衡量两个概率分布之间的差异,常见于模型评估(如信用评分)。引用[4]-[5]展示了用Python计算KS值的方法[^5]。 - **公式**: $$ D_{n,m} = \sup_x |F_{1,n}(x) - F_{2,m}(x)| $$ 其中 $F_{1,n}$ 和 $F_{2,m}$ 是两组样本的经验分布函数。 - **应用**: 判断模型预测结果的正负样本分布差异(如引用[5]中的 `y_label` 与 `pred` 列)。 --- ### 关键区别 | **维度** | **K8s (Kubernetes)** | **KS检验** | |----------------|-----------------------------------|-------------------------------| | **领域** | 容器编排与集群管理 | 统计学与模型评估 | | **典型应用** | 微服务部署、云原生应用 | 评估分类模型效果 | | **引用关联** | 引用[1]-[3](集群搭建) | 引用[4]-[5](Python代码示例) | --- ### 相关问题 1. **Kubernetes集群搭建需要哪些前置条件?** (参考引用[1]中的虚拟机配置、容器运行时依赖项要求等[^1]) 2. **如何通过KS值评估机器学习模型性能?** (参考引用[5]的代码实现及结果解读[^5]) 3. **KubeSphere与原生Kubernetes有何区别?** (结合引用[1]中“启用可插拔组件”的安装步骤[^1])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值