A K-th Largest Value
思路:记录一下当前数组中有多少个1,求第k大的数显然比较k与1的个数的大小
B Minimal Cost
思路:如果起点和终点不是互通的,我们只需要对相邻的两排进行操作
C Pekora and Trampoline
我们可以从前往后模拟。
题目给出的n<=5000,所以当s[i]+i>n的时候,s[i]多余的那一部分可以直接拿掉。我们这么做的时间复杂度是o(n^3),对于5000的范围会超时,所以需要进行优化。
优化:当从前往后模拟时,数组是不断趋近于全部都是1的状态的,我们可以记录:如果这个数是1,那么这个数后面第一个非1的位置。
#include <vector>
#include <iostream>
using namespace std;
typedef long long LL;
const int N = 1e5 + 10;
int a[N], nxt[N];
int n, t;
int ans = 0;
int gnxt(int u)
{
if (u == nxt[u])
return u;
return nxt[u] = gnxt(nxt[u]);
}
int main()
{
cin >> t;
while (t--)
{
cin >> n;
for (int i = 1; i <= n; ++i)
cin >> a[i];
for (int i = 1; i <= n + 1; ++i)
nxt[i] = i + (a[i] == 1);
LL res = 0;
for (int i = 1; i <= n; ++i)
{
if (a[i] + i > n)
{
if (i == n)
{
res += a[i] - 1;
a[i] = 1;
}
else
{
res += a[i] - (n - i);
a[i] = n - i;
}
}
while (a[i] != 1)
{
a[i]--;
res++;
int t = i + a[i] + 1;
while (t <= n)
{
if (a[t] == 1)
t = gnxt(t);
else
{
a[t]--;
nxt[t] = t + (a[t] == 1);
t = t + a[t] + 1;
}
}
}
}
cout << res << endl;
}
return 0;
}
D Zookeeper and The Infinite Zoo
当 u&v=v 时 u+v的2进制 一定是由 u的2进制 进位而来
例子:
u = 001010 时
v 可以为 001010 , 001000 , 000010 , 000000
我们发现 u+v 一定会发生2进制的进位(v=0除外)
所以我们只需要从低位往高位遍历一遍,看对于第i位后面两个数1的大小关系 。
#include <vector>
#include <iostream>
using namespace std;
typedef long long LL;
const int N = 1e5 + 10;
int main()
{
int q;
cin >> q;
for (int i = 1; i <= q; ++i)
{
int a, b;
cin >> a >> b;
int x = 0, y = 0;
if (a > b)
{
puts("NO");
continue;
}
int flag = 1;
while (a | b)
{
if (a & 1)
x++;
if (b & 1)
y++;
if (y > x)
flag = 0;
a >>= 1, b >>= 1;
}
if (flag)
puts("YES");
else
puts("NO");
}
return 0;
}
E Fib-tree
每次找到将fi分成fi-1与fi-2的边,递归处理fi-1与fi-2是否为fib-tree
#include <vector>
#include <cstring>
#include <iostream>
using namespace std;
const int N = 5e5 + 10, M = 2 * N;
int h[N], e[M], ne[M], idx = 0;
int del[M];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
int sz[N], father[N];
vector<int> point;
void dfs(int u, int fa)
{
father[u] = fa;
point.push_back(u);
sz[u] = 1;
for (int i = h[u]; i != -1; i = ne[i])
{
if (del[i] == true)
continue;
int j = e[i];
if (j == fa)
continue;
dfs(j, u);
sz[u] += sz[j];
}
}
bool check(int u, int n)
{
if (n <= 3)
return true;
int A = 1, B = 1;
while (A + B < n)
{
int tmp = A;
A = B;
B += tmp;
}
if (A + B != n)
return false;
point.clear();
dfs(u, 0);
int x = 0, y = 0;
for (auto p : point)
{
if (sz[p] == A || sz[p] == B)
{
x = p;
y = father[p];
}
}
if (x == 0 || y == 0)
return false;
for (int i = h[x]; i != -1; i = ne[i])
if (e[i] == y)
del[i] = del[i ^ 1] = true;
if (sz[x] == B)
return check(x, B) && check(y, A);
return check(x, A) && check(y, B);
}
int n;
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
memset(h, -1, sizeof h);
cin >> n;
for (int i = 1; i < n; ++i)
{
int a, b;
cin >> a >> b;
add(a, b);
add(b, a);
}
if (check(1, n))
puts("YES");
else
puts("NO");
return 0;
}