可视化工具数据分析实战应用
文章平均质量分 81
本专栏不仅讲解了基本的可视化知识,还附带实战案例。循序渐进式的展开。
优惠券已抵扣
余额抵扣
还需支付
¥59.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
普通网友
这个作者很懒,什么都没留下…
展开
-
EXCEL中VLOOKUP做精确匹配匹配后日期显示为00-Jan-00,教你如何解决
前言博文分为两个部分来解决VLOOKUP做精确匹配匹配后日期为空显示为1/0/1900的问题VLOOKUP匹配问题 VLOOKUP函数使用方法VLOOKUP函数可以用来核对数据,多个表格之间快速导入数据。利用这个功能bai可按列查找,最终返回该列所需查询列序所对应的值;与之对应的HLOOKUP是按行查找的。VLOOKUP(lookup_value,table_array,col_index_num,range_lookup)具体的函数使用方法:举个简单的例子在B表中找出所有在A.原创 2020-11-27 14:42:36 · 15510 阅读 · 0 评论 -
可视化实战应用-PowerBI中dax的使用实例
计算表返回值是一个二维表,比如下面返回一个只有一个时间列的表。时间是连续的,结束于6月。会扫描模型里的最大时间和最小时间,然后涵盖掉。计算列单行内计算,非聚合。和我们的非聚合型计算字段类似。注意,单行内的计算,是不能跨表的,这点和我们是一样的。但是也允许通过RELATED 、 RELATEDTABLE和LOOKUPVALUE函数引用其他关联表的字段,比如下面这样,跨sales表和product两张表的字段:度量聚合后的字段称为度量。度量分为隐式度量和显式度量,用DAX创建的叫显示度量原创 2022-06-07 06:15:00 · 1145 阅读 · 0 评论 -
【数据可视化应用】xarray 绘图可视化-赋权降维和Groupby(附代码)
赋权降维和Groupby(Ⅰ)引入相关包和导入数据:importnumpyasnpimportxarrayasxrfrommatplotlibimportpyplotasplt#数据导入path="...\\sst.mnmean.nc"#丢弃一个不必要导入的变量ds=xr.open_dataset(path,drop_variables=["time_bnds"])ds=ds.sel(time=slice("1960","2018")).l...原创 2022-04-07 05:00:00 · 1579 阅读 · 0 评论 -
【数据可视化应用】xarray 绘图可视化(五)-二进制GrADS气象数据处理(附代码)
xarray中的基础计算本节主要来讨论对 xarray 对象进行科学计算。同样我们先引入包,以便后续代码的调用。importexpectexception#若没有安装则需要在conda的base环境中运行下面的代码进行安装#pipinstallExpectExceptionimportnumpyasnpimportxarrayasxrfrommatplotlibimportpyplotasplt示例数据首先我们先导入所需的数据,本次使用的是经扩...原创 2022-04-06 04:00:00 · 1554 阅读 · 0 评论 -
【数据可视化应用】xarray 绘图可视化(六)-创建xarray对象&数据读取和转换&数据索引和分片&插值和广播(附代码)
创建xarray对象python语言作为一种高级语言提供了一个与这类地球科学数据提供了一个良好的交互环境基础,而由python语言编写的xarray包[1]则为该类数据的处理提供了良好的平台。多维数组多维数组(Multi-dimensional, N-dimensional, ND Arrays,Tensors)在计算科学、物理学、天文学、地球科学、生物信息学、工程学、金融等领域应用颇为广泛。如果你之前学习过python语言,那你一定不会对NumPy包[2]陌生。那有个问题便可以提出,为什么原创 2022-04-04 05:00:00 · 1187 阅读 · 0 评论 -
【可视化应用案例】使用ProPlot绘制兰伯特投影的填色图
虽然cartopy下的Plate Carrée投影使用方便,但中纬度下使用Lambert投影能更好的呈现真实的地图。用一个正圆锥切于或割于球面,将地球面投影到圆锥面上,然后沿一母线展开成平面。下图是使用proplot绘制的最终效果:在proplot中,可在以下链接找到相关投影名称表,其中兰伯特投影简称'lcc'。https://proplot.readthedocs.io/en/latest/api/proplot.constructor.Proj.ht...原创 2022-05-12 05:00:00 · 1578 阅读 · 0 评论 -
【数据可视化应用】xarray 绘图可视化(三)-基础绘图(附代码)
plt.xxx()与 ax.xxx()Matlibplot 架构有三大层次,如下图所示,从左至右分别是脚本层(Scripting layer,matplotlib.pyplot模块)、艺术家层(Artist layer,matplotlib.artist模块)和后端层(Backend layer,matplotlib.backend_bases模块)。应当指出,越靠近左侧的层次,绘图操作越抽象。Matlibplot 架构后端层通过与wxPython[1]和绘图语言(例如 PostScrip.原创 2022-03-27 06:00:00 · 1458 阅读 · 0 评论 -
【数据可视化应用】xarray 绘图可视化(二)-多维数组绘图(附代码)
一维数据绘图(Ⅰ)导入本期所需的包和数据importmatplotlib.pyplotaspltimportnumpyasnpimportxarrayasxrds1=xr.open_dataset("..\\air.2020.nc",drop_variables=["time_bnds"]).sel(level=850).rename({"air":"Tair"})ds=ds1.sortby("lat",ascending=True)r_eq...原创 2022-03-26 06:00:00 · 1273 阅读 · 0 评论 -
【数据可视化应用】xarray 绘图可视化(一)-分面绘图(附代码)
分面绘图(Ⅰ)为高效可视化多维数据,常将某个数据集的不同子集绘制至同一张图上。在这张图上包含了这个数据集的多个实例,一般称这种绘图方法为分面(FacetGrid)。这种绘制方法思想来源于小多组图组(Small Multiple)的概念。小多组图组也称为格状图(trellis chart)、点阵图(lattice chart)、网格图(grid chart)或面板图(panel chart)。小多组图组最显著的特征在以多个视图的形式显示数据集的不同分区。定量推理有一核心问题:到底是.原创 2022-03-25 06:00:00 · 1363 阅读 · 0 评论 -
【数据可视化应用】地图投影(附代码)
经典地图制图中使用的投影面有圆柱面、圆锥面或平面等。根据所用投影面,地图投影相对应地可分为圆柱投影、圆锥投影和方位投影。后来又发展出了很多现代地图投影,如伪圆柱、多圆锥等投影办法。在制图时选择合适的地图投影是一件重要的工作。本文将对 Cartopy 中支持的地图投影进行逐一进行简要介绍,这些投影都是 cartopy.crs 中的类。若要绘制某一类投影的地图,只需将其实例化之后传入plt.axes()方法的projection参数即可。本文不涉及投影的原理,旨在展示每种地图投影的效果和用法,以便在...原创 2022-04-28 04:00:00 · 1273 阅读 · 0 评论 -
【数据可视化应用】Python学术绘图(附实战案例)
使用Python绘制Sci学术期刊配图SciencePlots 库介绍使用Python-matplotlib绘制科研图表,其默认的颜色和格式并不能满足一般的期刊要求,若想要符合要求,就必须自定义设置,而这个步骤在对面对多幅图表时就显得繁琐和重复。在之前的几篇科学图表绘制推文中Python-matplotlib 学术散点图 EE 统计及绘制Python-matplotlib 横向堆积柱状图绘制就定制化表格编写了较多定制化代码。而SciencePlots就是为解决科研图表繁琐设置而定制的一系列科研绘..原创 2022-06-10 05:45:00 · 1953 阅读 · 2 评论 -
【数据可视化应用】Python反距离权重(IDW)插值计算及可视化绘制
本文我们将介绍IDW(反距离加权法(Inverse Distance Weighted))插值的Python计算方法及插值结果的可视化绘制过程。主要涉及的知识点如下: IDW简介 自定义Python代码计算空间IDW 分别使用plotnine、Basemap进行IDW插值结果可视化绘制 IDW简介反距离权重 (IDW)插值假设:彼此距离较近的事物要比彼此距离较远的事物更相似。当为任何未测量的位置预测值时,反距离权重法会采用预测位置周围的测量值与距离预测位置较远的测量值相..原创 2022-06-17 05:00:00 · 2072 阅读 · 0 评论 -
【数据可视化应用】Python-pykrige包-克里金(Kriging)插值计算及可视化绘制
本文我们将介绍如何使用Python进行克里金(Kriging)插值计算及插值结果的可视化绘制。主要涉及的知识点如下: 克里金(Kriging)插值简介 Python-pykrige库克里金插值应用 克里金(Kriging)插值结果可视化绘制 克里金(Kriging)插值简介克里金法(Kriging)是依据协方差函数对随机过程/随机场进行空间建模和预测(插值)的回归算法。在特定的随机过程,例如固有平稳过程中,克里金法能够给出最优线性无偏估计(Best Linear Unbi.原创 2022-03-18 05:00:00 · 5144 阅读 · 0 评论 -
【数据可视化应用】Python-R-双Y轴可视化绘制
主要的知识点如下: Matplotlib-Axes.twinx()方法添加副轴 ggplot2-sec.axis()绘制双轴 Matplotlib-Axes.twinx()方法添加副轴这里我们直接就给出数据预览和可视化设计的代码,图中部分代码我们再做详细解释,数据预览如下:自定义的颜色字典year_color构造代码如下:color=("#51C1C8","#E96279","#44A2D6","#536D84","#51C1C8","#......原创 2022-06-29 05:30:00 · 874 阅读 · 0 评论 -
【数据可视化应用】气象绘图(附Python代码)
数据本文使用数据来自:https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.derived.surface.html北半球冬季平均经向风难点:各种库的下载与安装,主要难点在xarray上。因为不需要设置地图,此图还是比较简单的。结果和代码如下。fig4.2importmatplotlib.pyplotaspltimportxarrayasxrimportnumpyasnpimportmatplot......原创 2022-07-03 06:00:00 · 1583 阅读 · 0 评论 -
【气象可视化应用】空间降尺度实战应用(附MATLAB、Python和R语言多种代码实现)
1 Matlab注:对插值没有特殊要求,直接CDO软件搞定NCL内置函数&Python~github...Matlab griddata、interp......1.1交叉相关%两个时间序列不同超前滞后的交叉相关%时间序列采用unifrnd函数随机生成clc;clear;close allx = unifrnd (1, 100, 100, 1);y = unifrnd (1, 100, 100, 1);corrgram(x,y)1.2Matlab插值1.2...原创 2022-03-12 06:00:00 · 2784 阅读 · 0 评论 -
【可视化应用案例】Python绘制桑吉图
桑基图简介很多时候,我们需要一种必须可视化数据如何在实体之间流动的情况。例如,以居民如何从一个国家迁移到另一个国家为例。这里演示了有多少居民从英格兰迁移到北爱尔兰、苏格兰和威尔士。从这个桑基图 (Sankey)可视化中可以明显看出,从England迁移到Wales的居民多于从Scotland或Northern Ireland迁移的居民。什么是桑基图?桑基图通常描绘从一个实体(或节点)到另一个实体(或节点)的数据流。数据流向的实体被称为节点,数据流起源的节点是源节点(例如左侧的En..原创 2022-03-10 06:00:00 · 1610 阅读 · 0 评论 -
【数据可视化应用】实现空间栅格(附R语言代码)
R-ggplot2 可视化绘制由于对ggplot2的绘图体系还不是很了解,所以这一步花费很长时间,但也对ggplot2的绘图语法有了更深的理解。话不多说,我们直接上代码,如下:#Raster_data_Vis.Rlibrary(ggplot2)library(raster)library(viridis)library(ggthemes)library(sf)#添加字体windowsFonts(Cinzel=windowsFont("Cinzel"),#这里使...原创 2022-02-18 03:30:00 · 1898 阅读 · 0 评论 -
【数据可视化应用】绘制气象地图(附Python代码)
1.绘制兰勃脱投影的中国区域(包含南海子图):import numpy as npimport xarray as xrimport matplotlib.pyplot as pltimport cartopy.crs as ccrsimport cartopy.feature as cfeaturefrom copy import copyfrom cartopy.mpl.gridliner import LATITUDE_FORMATTER, LONGITUDE_FORMATTERimport s原创 2022-02-13 03:15:00 · 2621 阅读 · 0 评论 -
【数据可视化应用】绘制词云图(附Python代码)
前言当我们手中有一篇文档,比如书籍、小说、电影剧本,若想快速了解其主要内容是什么,则可以采用绘制 WordCloud 词云图,显示主要的关键词(高频词)这种方式,非常方便。本文将介绍常见的英文和中文文本的词云图绘制,以及 Frequency 频词频词云图。1. 英文词云我们先绘制英文文本的词云图,因为它相对简单一些。这里以《海上钢琴师》这部电影的剧本为例。首先,准备好电影剧本的文本文件(如下图):接下来,我们绘制一个最简单的矩形词云图,代码如下:1importos2f.原创 2022-02-06 03:00:00 · 3001 阅读 · 0 评论 -
【数据可视化应用】绘制空间地图(附R语言代码)
R-tmap 绘制带指北针和比例尺的空间地图tmap 简介说起绘制空间数据相关的可视化作品,R语言还是比Python 要方便的多的。这里我们就简单介绍下tmap 空间数据可视化绘图包,官网(https://mtennekes.github.io/tmap/) 还是有很多优秀的效果图的,如下:值得注意的是,tmap拥有类似于ggplot2 “图层” 语法绘图原理,熟悉ggplot2绘图的小伙伴肯定会快速上手的。当然其也拥有较多的绘图函数,可是高度定制化自己的所需要的空间可视化.原创 2022-02-20 04:00:00 · 2532 阅读 · 0 评论 -
【数据可视化应用】绘制动态图表(附Python代码)
前言最近发现一个可视化图库「Pandas_Alive」,不仅包含动态条形图,还可以绘制动态曲线图、气泡图、饼状图、地图等。同样也是几行代码就能完成动态图表的绘制。GitHub地址:https://github.com/JackMcKew/pandas_alive使用文档:https://jackmckew.github.io/pandas_alive/安装版本建议是0.2.3,matplotlib版本是3.2.1。同时需自行安装tqdm(显示进度条)和desc原创 2022-01-27 05:30:00 · 1692 阅读 · 0 评论 -
【数据可视化应用】绘制圆角条形图(附R语言代码)
ggchicklet 包简介ggchicklet包具体的绘图函数主要介绍geom_chicklet()绘图函数,其语法和ggplot2的geom_col()类似,但其提供了radius属性,用于设置圆角角度,其主要语法如下:geom_chicklet(mapping=NULL,data=NULL,position=ggplot2::position_stack(reverse=TRUE),radius=grid::unit(3,"pt"),.....原创 2022-01-24 06:00:00 · 1225 阅读 · 0 评论 -
【数据可视化应用】核密度空间插值实战案例(附Python和R语言代码)
Python-plotnine 核密度空间插值geopandas 绘制空间地图及裁剪操作 针对geopandas的安装问题,最好使用conda install --channel conda-forge geopandas进行安装。但考虑到科学上网的问题,这一步就难住了很多人。大多人还是采用pip安装geopandas以及其依赖包,可以自行查看官网下载依赖包即可。读取geojson 地图文件、散点数据及基础绘图代码如下: 散点数据预览如下:具体绘图代码如下:import...原创 2022-02-09 04:00:00 · 1676 阅读 · 0 评论 -
【数据可视化应用】IDW插值计算实战案例(附Python和R语言代码)
Python版本IDW简介反距离权重 (IDW)插值假设:彼此距离较近的事物要比彼此距离较远的事物更相似。当为任何未测量的位置预测值时,反距离权重法会采用预测位置周围的测量值与距离预测位置较远的测量值相比,距离预测位置最近的测量值对预测值的影响更大。反距离权重法假定每个测量点都有一种局部影响,而这种影响会随着距离的增大而减小。由于这种方法为距离预测位置最近的点分配的权重较大,而权重却作为距离的函数而减小,因此称之为反距离权重法。(解释来源于网络),繁琐的公式也没放,这里我们给出几张示意图即可,原理.原创 2022-04-19 05:00:00 · 2234 阅读 · 0 评论 -
【数据可视化应用】绘制风玫瑰图(附Python代码)
https://github.com/python-windrose/windrosepip install windrosepip install git+https://github.com/python-windrose/windrosegit clone https://github.com/python-windrose/windrosepython setup.py installfrom windrose import WindroseAxesfrom matplotlib原创 2022-02-17 04:00:00 · 2498 阅读 · 0 评论 -
【数据可视化应用】绘制峰峦图(附R语言代码)
1.数据结构这里使用base包中的diamonds数据集做例子。# librarylibrary(ggridges) # Ridgeline Plots in 'ggplot2', CRAN v0.5.2library(ggplot2) # Create Elegant Data Visualisations Using the Grammar of Graphics, CRAN v3.3.2 head(diamonds)2.绘图教程2.1基础版本使用price作为x轴,.原创 2022-03-06 03:00:00 · 1742 阅读 · 0 评论 -
【数据可视化应用】绘制half-half plots图(附R语言代码)
介绍gghalves可以通过ggplot2轻松地编写自己想要的一半一半(half-half plots)的图片。比如:在散点旁边显示箱线图、在小提琴图旁边显示点图。gghalves[1]将_half_扩展添加到选定的geom。比如:geom_half_violin()函数,相当于geom_violin()函数的变体,该函数主要作用就是展示一半的小提琴图,然后与其他图形组合。还包含以下函数: geom_half_boxplot geom_half_violin geom_ha原创 2022-05-28 04:30:00 · 912 阅读 · 0 评论 -
【数据可视化应用】绘制类别插值地图(附Python代码)
sklearn.KNeighborsClassifier()终于这篇推文将机器学习和可视化完美的结合起来,即:机器学习处理数据,数据可视化技术展现、美化数据(以后的深度学习部分也会延续这个风格,只不过比重不同而已)。首先,我们给出我们今天的数据:散点数据和四川省的地图文件,python读取操作如下:importpandasaspdimportnumpyasnpfromsklearn.neighborsimportKNeighborsClassifierdata=pd....原创 2022-02-22 03:00:00 · 1674 阅读 · 0 评论 -
【数据可视化应用】绘制峰峦地图(附Python和R语言代码)
Python版本Python-ridge_map包简介ridge_map包作为Python第三方包就是为绘制“山峦”地图而生,其官网为:https://github.com/ColCarroll/ridge_map,官方提供的例子如下:(由于官网提供的例子都需要在线下载数据,但由于有的小伙伴无法科学上网,这里只提供效果图)「样例1」:fromridge_mapimportRidgeMapRidgeMap().plot_map()Sample_01「样例2」:f...原创 2022-02-26 03:00:00 · 1274 阅读 · 0 评论 -
【数据可视化应用】华夫饼型柱状图(附R语言代码)
这个图中,其实比例直方图就可以实现,但是这里把简单的直方图变成华夫饼图,提升了美观程度。整体实现代码如下:library(wesanderson)library(tidyverse)library(cowplot)library(waffle)library(scales)#### Data ####wildlife_impacts <- read_csv("data/data_2019-07-23.csv", col_types = "Tcccccccccdddcdddcccd")..原创 2022-02-18 09:14:35 · 1123 阅读 · 0 评论 -
【数据可视化应用】绘制和弦图(附Python和R语言代码)
和弦图(Chord diagram)简介和弦图(chord Diagram),是一种显示矩阵中数据间相互关系的可视化方法,节点数据沿圆周径向排列,节点之间使用带权重(有宽度)的弧线链接。其适合节点数据集或边数据集,功能为观察数据节点之间的关系。此类图主要将数据权重映射到节点和边的宽度,适合多组数据进行绘制。和弦图的结构大致如下:和弦图结构(图片来源于网络,侵删)下面就具体介绍下使用R和Python进行和弦图(chord Diagram)的绘制。和弦图(Chord diagram)绘制方法原创 2022-02-27 03:00:00 · 5498 阅读 · 0 评论 -
【数据可视化应用】绘制拟合区间统计图表(附Python和R语言代码)
R-ggplot2::geom_smooth()函数绘制小编这里将结合R-ggpubr包进行必要图表元素的的添加,首先,我们使用ggplot2进行基本的绘制,如下:「样例一」:单一类别library(tidyverse)library(ggtext)library(hrbrthemes)library(wesanderson)library(LaCroixColoR)library(RColorBrewer)library(ggsci)#读取数据library(readxl..原创 2022-04-20 05:00:00 · 1223 阅读 · 0 评论 -
【数据可视化应用】绘制QQ图(附Python和R语言代码)
QQ图(Quantile-Quantile Plots)含义简单介绍 「含义」: QQ图是用于验证一组数据是否符合正态分布,或者验证某两组数据是否来自同一分布情况,是一种散点图,通常情况下,其横坐标为标准正态分布的分位数,纵坐标为样本值。要利用QQ图判定测试样本数据是否近似于正态分布,只需看QQ图上的点是否近似地在一条直线附近,更多关于QQ图的含义理解,小伙伴们可自行搜索哈~~。QQ图样例如下(来源于网络):QQ图样例参考这里小编给大家推荐一个比较好的QQ图介绍视频资源,有条件的小伙伴原创 2022-06-03 05:45:00 · 6409 阅读 · 0 评论 -
【数据可视化应用】绘制极坐标(附Python代码)
折扇图先从简单的折扇图开始, 此图在新冠疫情期间很火, 其实就是极坐标系下的柱状图,我这里随便编了几个数据。自动计算坐标,无论长度如何。 文字标签坐标是柱子中线顶点向外偏移200个单位。 # 编造数据import numpy as npvalues = np.arange(10,0,-1)*100 # 从大到小排序labels = ["北京","广东", "浙江", "江苏", "四川", "湖北", "上海", "深圳", "重庆", "天津"]# 计算坐标width = 2*np.pi原创 2022-03-03 03:00:00 · 2344 阅读 · 0 评论 -
【数据可视化应用】用Python通过ggplot2实现交互可视化(附Python应用案例)
ggplot2作图库R语言的ggplot2绘图能力超强,python虽有matplotlib,但是语法臃肿,使用复杂,入门极难,seaborn的出现稍微改善了matplotlib代码量问题,但是定制化程度依然需要借助matplotlib,使用难度依然很大。而且咱们经管专业学编程语言,一直有一个经久不衰的问题-“学数据分析,到底选择R还是Python”。通过plotnine这个库,你就可以在python世界中体验下R语言的新奇感,体验可视化之美。plotnine包,可以实现绝大多数ggplot2的原创 2022-05-07 05:30:00 · 1236 阅读 · 0 评论 -
R语言实战应用精讲50篇(三十三)-R-circlize包应用案例详解(附R语言代码)
富集分析结果可视化加载R包library(tidyverse)library(stringr)library(circlize)library(ComplexHeatmap)导入数据load("data.RData")获取连续型颜色代码col_fun=colorRamp2(c(-5,0,5),c("blue","white","red"))col_fun(seq(-5,5,by=2.5))数据清洗在这里只展示了自己感兴趣的基因,由于要根据FC值对基...原创 2022-01-30 06:00:00 · 1708 阅读 · 0 评论 -
【数据可视化应用】数据统计分析的显著性标注(附Python和R语言代码)
Python版本Python-Seaborn 自定义函数绘制我们可以通过自定义绘图函数的方式在统计图表中添加显著性标注,这里我们直接使用Seaborn自带的iris数据集进行绘制,具体内容如下:自定义P值和星号对应关系由于是完全的自定义,这里需要定义一个函数将P值结果和对应星号进行转化,代码如下:defconvert_pvalue_to_asterisks(pvalue):ifpvalue<=0.0001:return"****"e...原创 2022-04-08 05:00:00 · 1868 阅读 · 0 评论 -
【数据可视化应用】绘制“变形”地图(附R语言代码)
cartogram包简介cartogram包的官网为:https://github.com/sjewo/cartogram。其主要绘图函数有cartogram_cont()、cartogram_ncont()和cartogram_dorling()函数,我们依次列出其对应的绘图结果(以下直接给出绘制结果,注:地图基于tmap包绘制),如下:「cartogram_cont()」cartogram_cont example「cartogram_ncont()」cartogram_nc原创 2022-02-24 04:30:00 · 1605 阅读 · 0 评论 -
【数据可视化应用】绘制双变量映射地图(附R语言代码)
Bivariate Choropleth Map在绘制地图时,我们常常使用单一变量进行映射处理,当然,这样展示的结果可以很好的表现我们研究的特征(如收入、房价等)的变化情况或者具体的情况,如下图:单一变量映射地图首先,我们先通过通过下图来简单解释下双变量映射的含义: 首先我们创建单一变量的3级顺序配色色系。色系从较浅的中性色开始,代表第一个变量的最小值。色系颜色逐渐变暗,并朝着代表较高值的色相饱和。中间色应与底色具有相同的色相,但其饱和度应较低而亮度较高,如下: 根据第原创 2022-04-21 05:00:00 · 1803 阅读 · 0 评论