解决2K/4K高分屏下Vmware等虚拟机下Kail Linux界面显示问题

问题现象

在我们日常使用VirtualBox、Vmware workstation、Hyper-V等虚拟机安装使用Kali系统,在2K/4K高分辨率电脑下Kali系统界面显示太小,包括各种软件及命令终端字体均无法很直观的看出,影响我们的正常测试及使用。

常规处理思路 

很多人会通过调整我们笔记本或台式机的系统屏幕分辨率设置,或者修改缩放显示比例等,还有尝试通过修改kali显示设置发现调整前后都没有任何变化,更有甚者会将虚拟化软件降级到老版本或者使用老版本Kali等等。

延申分析解决

实际我们在复现测试问题的时候对比不同版本虚拟机及新老版本kali,在高分屏下基本都是同类问题,但是在尝试在非高分屏的电脑上明显没有这个kali显示问题。所以我们尝试在kali Linux系统设置本身进行解决。正常启动 Kali Linux 后,某些内容窗口界面/按钮或文本/字体可能会比预期小。这可能是因为HiDPI,又名High DPI。这完全取决于所讨论的软件及其制作方式,例如 GTK2、GTK3、Qt5 等。发生这种情况的原因有多种,例如显卡驱动程序和/或显示器配置文件。遂将操作步骤内容整理成文档供大家学习参考,希望可以帮助大家。

解决方法 

1、点击Applications图标,搜索栏输入 hidpi,选择“Kali HiDPI Mode”; 或者直接搜索栏输入kali-hidpi-mode ,选择“Run kali-hidpi-mode”或“Kali HiDPI Mode”;

2、弹出HiDPI mode窗口点击“Yes”完成设置即可;

结果验证

显示正常。

注解:

桌面环境 - Xfce 支持 HiDPI 显示器,具体取决于您的硬件、版本和问题才能使其正常工作。为了使这个过程更容易,Kali 现在提供了 HiDPI 模式。此模式调整 GTK、QT 甚至基于 Java 的界面的缩放因子,因此用户无需手动修改它们中的每一个。您可以通过从应用程序菜单中打开“Kali HiDPI 模式”或kali-hidpi-mode从终端运行来切换它。

注意:尽管 kali-hidpi-mode 能够在无需重新启动的情况下更改缩放因子,但建议关闭会话并再次登录以确保正确应用所有更改。

此模式能够将每个窗口缩放至 2 倍,但在某些情况下,此比例对于某些显示器来说太大。在这种情况下,您可以启用 HiDPI 模式,然后在 Xfce 的显示设置中配置自定义分数缩放。推荐配置为 1.3x-1.5x。

具体请参考“​​HiDPI (High Dots Per Inch) Display​​”

### 2025年1月5日的大数据平台技术趋势与发展 #### 数据量持续增长带来的挑战与机遇 随着国家大数据战略的推进,至2025年初,中国大数据产业规模预计将超过3万亿元人民币,相较于之前几年保持着约25%的年均复合增长率[^2]。这一时期的数据类型更加多样化,尤其是来自物联网设备产生的实时流式数据占比显著提高。 #### 构建现代化大数据生态系统 为了应对海量数据处理需求,在架构层面会更加强调分布式计算框架的应用,如Apache Flink、Spark Streaming等近实时处理引擎将得到广泛应用;同时,围绕着Kubernetes为核心的容器编排工具也将进一步简化集群管理和资源调度工作流程。此外,Serverless无服务器架构模式有望成为主流选择之一,它允许开发者专注于业务逻辑开发而无需关心底层基础设施运维细节[^4]。 #### 加强安全性和隐私保护机制建设 鉴于近年来频发的数据泄露事件以及日益严格的法律法规监管环境,《金融科技(FinTech)发展规划(20222025年)》强调了通过采用先进的加密算法和技术手段来保障敏感信息安全的重要性。因此,在未来一段时间里,零信任网络访问(ZTNA)、同态加密(Homomorphic Encryption)等相关技术和理念会被更多地引入到实际项目当中去。 #### 推动智能化转型进程加速 借助于机器学习和深度神经网络的强大功能,预测分析、自然语言处理(NLP)等领域将迎来快速发展阶段。金融机构可以利用这些先进技术构建更为精确的风险评估模型和服务推荐系统,从而更好地服务于客户并降低运营成本。与此同时,自动化运维(AIOps)也将在维护大型数据中心稳定运行方面发挥重要作用。 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from keras.models import Sequential from keras.layers import Dense, Dropout # 假设我们有一个用于训练的人工智能风控模型 data = pd.read_csv('financial_data.csv') X = data.drop(columns=['target']) y = data['target'] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) X_train, X_test, y_train, y_test = train_test_split( X_scaled, y, test_size=0.2, random_state=42) model = Sequential([ Dense(64, activation='relu', input_shape=(X.shape[1],)), Dropout(0.5), Dense(32, activation='relu'), Dropout(0.5), Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=20, batch_size=32, validation_split=0.2) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值