每天一题LeetCode--无重复字符的最长子串

1、题目

给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。

示例 1:

输入: "abcabcbb"
输出: 3 
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。

示例 2:

输入: "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。

示例 3:

输入: "pwwkew"
输出: 3
解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。
     请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列,不是子串。

2、解题

自己的思路:由于要找出不含有重复字符的 最长子串 的长度,那么便想着使用双重for循环,外层从头开始遍历,内层从下一个字符开始遍历。
使用变量maxLen记录当前最大长度;临时变量len记录当前遍历的长度;temp记录当前len对应的字符串。
如果内层遍历到某个位置时,len超过了maxLen,则修改maxLen的值(+1);
如果内层遍历到某个位置时,含有了重复字符,则退出当前内层循环。

实现代码:

class Solution {
    public int lengthOfLongestSubstring(String s) {
        int maxLen=0;
        for(int i=0;i<s.length();i++){
            int len=1;
            String temp=s.substring(i,i+1);
            for(int j=i+1;j<s.length();j++){
                if(temp.indexOf(s.substring(j,j+1))==-1){
                    temp=temp+s.substring(j,j+1);
                    len=len+1;
                }else{
                    break;
                }                
            }
            if(len>maxLen){
                maxLen=len;
            }
        }
        return maxLen;
    }
}

此时执行用时:500 ms;内存消耗:39.3 MB
这道题官网标识难度:中等。
双层for循环耗时太久了。。。

3、LeetCode官方题解

方法一:滑动窗口

思路和算法:

我们先用一个例子来想一想如何在较优的时间复杂度内通过本题。

我们不妨以示例一中的字符串abcabcbb 为例,找出 从每一个字符开始的,不包含重复字符的最长子串,那么其中最长的那个字符串即为答案。对于示例一中的字符串,我们列举出这些结果,其中括号中表示选中的字符以及最长的字符串:

  • 以(a)bcabcbb 开始的最长字符串为 (abc)abcbb;
  • 以 a(b)cabcbb 开始的最长字符串为 a(bca)bcbb;
  • 以ab( c)abcbb 开始的最长字符串为ab(cab)cbb;
  • 以abc(a)bcbb 开始的最长字符串为abc(abc)bb;
  • 以 abca(b)cbb 开始的最长字符串为abca(bc)bb;
  • 以 abcab©bb 开始的最长字符串为 abcab(cb)b;
  • 以abcabc(b)b 开始的最长字符串为abcabc(b)b;
  • 以 abcabcb(b) 开始的最长字符串为abcabcb(b)。

发现了什么?如果我们依次递增地枚举子串的起始位置,那么子串的结束位置也是递增的!这里的原因在于,假设我们选择字符串中的第 k 个字符作为起始位置,并且得到了不包含重复字符的最长子串的结束位置为 rk。那么当我们选择第 k+1个字符作为起始位置时,首先从 k+1到rk的字符显然是不重复的,并且由于少了原本的第 k 个字符,我们可以尝试继续增大rk,直到右侧出现了重复字符为止。

这样以来,我们就可以使用「滑动窗口」来解决这个问题了:

  • 我们使用两个指针表示字符串中的某个子串(的左右边界)。其中左指针代表着上文中「枚举子串的起始位置」,而右指针即为上文中的rk
  • 在每一步的操作中,我们会将左指针向右移动一格,表示 我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。在移动结束后,这个子串就对应着 以左指针开始的,不包含重复字符的最长子串。我们记录下这个子串的长度;
  • 在枚举结束后,我们找到的最长的子串的长度即为答案。
    判断重复字符

在上面的流程中,我们还需要使用一种数据结构来判断 是否有重复的字符,常用的数据结构为哈希集合(即 C++ 中的 std::unordered_set,Java 中的 HashSet,Python 中的 set, JavaScript 中的 Set)。在左指针向右移动的时候,我们从哈希集合中移除一个字符,在右指针向右移动的时候,我们往哈希集合中添加一个字符。

至此,我们就完美解决了本题。

class Solution {
    public int lengthOfLongestSubstring(String s) {
        // 哈希集合,记录每个字符是否出现过
        Set<Character> occ = new HashSet<Character>();
        int n = s.length();
        // 右指针,初始值为 -1,相当于我们在字符串的左边界的左侧,还没有开始移动
        int rk = -1, ans = 0;
        for (int i = 0; i < n; ++i) {
            if (i != 0) {
                // 左指针向右移动一格,移除一个字符
                occ.remove(s.charAt(i - 1));
            }
            while (rk + 1 < n && !occ.contains(s.charAt(rk + 1))) {
                // 不断地移动右指针
                occ.add(s.charAt(rk + 1));
                ++rk;
            }
            // 第 i 到 rk 个字符是一个极长的无重复字符子串
            ans = Math.max(ans, rk - i + 1);
        }
        return ans;
    }
}

复杂度分析

  • 时间复杂度:O(N),其中 N 是字符串的长度。左指针和右指针分别会遍历整个字符串一次。
  • 空间复杂度:O(∣Σ∣),其中Σ 表示字符集(即字符串中可以出现的字符),∣Σ∣ 表示字符集的大小。在本题中没有明确说明字符集,因此可以默认为所有 ASCII 码在[0,128) 内的字符,即∣Σ∣=128。我们需要用到哈希集合来存储出现过的字符,而字符最多有∣Σ∣ 个,因此空间复杂度为O(∣Σ∣)。

LeetCode中文网址:力扣

Happy Learning ~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值