KNN-用于回归的python实现

本文介绍了如何用Python实现KNN算法进行回归预测。在保持距离计算步骤不变的基础上,算法选择训练集中最接近的k个点,然后取这些点的标签值平均数作为预测值。
摘要由CSDN通过智能技术生成

KNN-用于回归的python实现

之前实现过用于分类的KNN算法,现在实现用于回归的KNN算法,前面计算预测样本与训练集中样本的距离的步骤不变,后面同样是选取训练集中样本最近的k个点,但是输出的结果变为最近的k个训练样本的标签值的平均。使用最近的k个训练样本的标签值的平均作为预测样本的预测值。

# encoing:utf-8

import numpy as np
import pandas as pd
import math

def KNN(X_test, dataSet,labels,k):
    dataSet = pd.DataFrame(dataSet, index=None)
    dataSetSize = dataSet.shape[0]
    # sqDiffvec = []
    sqDiff = []
    X_test=pd.Series(X_test, index=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值