单调队列
文章平均质量分 71
WerKeyTom_FTD
我是一只来自中山纪念中学高三的oier,请多多指教
展开
-
斜率大法题库
[bzoj3675][Apio2014]序列分割题目大意及模型转换给定一个由N个元素组成的序列,你现在要对其做M次操作。每次操作如下: 1、选择一个长度大于1的序列,找到任意一个合法位置,将其分割成两个长度不为0的序列。 如[3,2,5,7,8]可以在2后面进行分割变为[3,2]和[5,7,8]。 2、如此做可以获得分数为两个分割后的序列元素之和相乘。 请使总分数最大。 每个元素都为正数,原创 2015-08-23 13:52:26 · 1455 阅读 · 5 评论 -
查税
题目大意及模型转换:有两种操作,第一种操作是将第x条射线修改,第二种操作是询问第l~r条射线与x=a的交点纵坐标的最大值。射线个数N暴力:显然我们可以做到O(1)修改O(N)询问。分块大法:这两个时间能不能平衡一下呢?能!都变成O(√N)。我们可以用分块大法,让每块包含√N个元素(实际实现中,是每块√N+1个,这里为了叙述方便)。对于块内元素,我们根据斜率从小到原创 2015-08-11 20:06:55 · 622 阅读 · 0 评论 -
[bzoj3141][HNOI2013]旅行
题目描述在遥远的HX 国,住着一个旅行家小L,他希望骑着他的自行车游遍全国。在这个国家中,每个城市都有一个编号,共有n 个城市,编号从1 到n。有的城市没有小L 想去的景点,而有的城市有且仅有一个小L 想去的景点,所有城市都是这两种情况之一。小L 非常热爱信息学,他编写程序给他的旅行安排了一条最短路线以到达所有他想去的景点(所以他旅行线路上城市编号是乱序的):他第1 个到达的城市编号为a1,第i 个原创 2015-12-09 20:10:33 · 1252 阅读 · 0 评论 -
[BC#89B]Fxx and game
题目大意给定n、k、t。 对于一个数x,可以一步变成x/k(必须整除)或x-i(1<=i<=t) 求把n变成1的最少步数DP设f[i]表示i变成1的最少步数 显然f[i*k]=min(f[[i*k],f[i]+1) 那么对于减怎么办? 维护单调递增的单调队列,每次从队头取决策,如果队头不合法则踢出。 注意k=1或t=0#include<cstdio>#include<algorithm原创 2016-11-02 14:42:45 · 607 阅读 · 0 评论 -
[bzoj3721]Final Bazarek
题目描述有n件商品,选出其中的k个,要求它们的总价为奇数,求最大可能的总价。做法首先肯定要取一个奇数,所以一定取最大的奇数。 一个奇数都没有可以直接-1了。 接下来奇数只能两个两个取,而偶数可以一个一个取。 而且肯定从大到小,所以先排个序。然后num[x]表示取x对奇数前缀和,sum[x]表示取x个偶数前缀和。 假设要取k个,而且我们取了x对奇数,贡献是num[x]+sum[k-2x] 所原创 2017-01-25 15:12:25 · 602 阅读 · 0 评论 -
查询
题目描述给出若干条线段,用(x1,y1),(x2,y2)表示其两端点坐标,现在要求支持两种操作: 0 x1 y1 x2 y2 表示加入一条新的线段,(x1,y1)-(x2,y2) 1 x0 询问所有线段中,x坐标在x0处的最高点的y坐标是什么,如果对应位置没有线段,则输出0。分治考虑CDQ分治,问题转化为先做0操作再做1操作。 按照横坐标建线段树,在一个线段树节点上线段可当直线用。 维护原创 2017-04-06 09:34:32 · 466 阅读 · 0 评论 -
[bzoj4860]树的难题
题目大意点分治点剖。 每颗子树按最上面那条边的颜色排序。 顺序扫,同颜色的用一颗线段树,其他也用一颗线段树。 每扫过一个颜色合并一下两颗线段树。 这个方法比单调队列不知道低到哪里去了。#include<cstdio>#include<algorithm>#define max(a,b) (a>b?a:b)#define fo(i,a,b) for(i=a;i<=b;i++)using原创 2017-04-21 15:04:31 · 1500 阅读 · 2 评论 -
[CF480E]Parking Lot
题目描述http://codeforces.com/contest/480/problem/E做法首先加入所有询问坐标,求出答案。 初始答案很好求,你可以设f[i,j]表示以(i,j)为左下角的最大正方形边长。 那么f[i,j]=min(f[i−1,j],f[i,j+1])(+1)f[i,j]=min(f[i-1,j],f[i,j+1])(+1)后面是否+1要判断右上角。 当然左下角是障碍f[原创 2017-06-11 16:17:31 · 867 阅读 · 0 评论