- 博客(2)
- 收藏
- 关注
原创 最优化-牛顿法(一元函数)
最优化-牛顿法from sympy import *from time import *def newton_method(): x = symbols('x') y = x**2 - 7*x + 6 x1 = 30 dy = diff(y, x).subs({x: x1}) first_step = y.subs({x: x1}) x1 = x1 - (first_step/dy) this_step = y.subs({x: x1})
2020-10-12 20:30:01 499
原创 梯度下降法-python实现(个人学习+记录,望大佬指正)
梯度下降法:def gradient_descent(): x = symbols('x') z = x**2 - 7*x + 6 x1 = 30 alpha = 0.03 dx = diff(z, x).subs({x: x1}) last_result = z.subs({x: x1}) # 先下降一步以进行后面的收敛判断 this_result = z.subs({x: (x1-(alpha*dx)) }
2020-10-08 23:23:46 250
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人