XTuner 微调个人小助手

1 克隆项目相关文件,并创建环境

git clone https://github.com/InternLM/Tutorial.git -b camp4
mkdir -p /root/finetune && cd /root/finetune
conda create -n xtuner-env python=3.10 -y
conda activate xtuner-env

2. 安装 XTuner

git clone https://github.com/InternLM/xtuner.git
cd /root/finetune/xtuner

pip install  -e '.[all]'

-e:表示以“editable”(可编辑)模式安装。这样做的好处是,安装的库与源代码直接链接,因此对源代码的任何更改都会立即反映在库中,适合开发和调试。

安装其他库

pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
pip install transformers==4.39.0

验证安装

xtuner list-cfg

3.修改训练用数据

mkdir -p /root/finetune/data && cd /root/finetune/data
cp -r /root/Tutorial/data/assistant_Tuner.jsonl  /root/finetune/data

调整后的训练数据 

4.训练启动

4.1软连接开发机准备好的训练模型
mkdir /root/finetune/models

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/finetune/models/internlm2_5-7b-chat

4.2修改官方配置模板

复制官方配置模板

修改配置模板中的模型路径,训练数据路径

4.3运行命令,开始微调
xtuner train ./config/internlm2_5_chat_7b_qlora_alpaca_e3_copy.py --deepspeed deepspeed_zero2 --work-dir ./work_dirs/assistTuner

 损失率下降中

5.训练结束后的模型保存处理

转换成huggingface格式 

cd /root/finetune/work_dirs/assistTuner
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_5_chat_7b_qlora_alpaca_e3_copy.py /root/finetune/work_dirs/assistTuner/iter_864.pth ./hf

与原模型合并(三个参数分别为原模型,adapter增量模型, 合并后模型路径)

cd /root/finetune/work_dirs/assistTuner
conda activate xtuner-env

export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert merge /root/finetune/models/internlm2_5-7b-chat ./hf ./merged --max-shard-size 2GB

合并完成 

6.运行训练后的模型

进行端口映射

启动模型对话应用

进行对话,对话助手不同于基座模型,通过微调把自己定义为老六助手^o^!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值