聚类
传统聚类方法以及深度学习聚类方法
Weyoung_
这个作者很懒,什么都没留下…
展开
-
Deep Unsupervised Clustering Using Mixture of Autoencoders(2017)
Abstract我们的模型由两个部分组成:1)a collection of autoencoders,每个都会学习相似数据的潜在manifold,2)a mixture neural network,接受来自autoencoders的concatenated vectors,推断在聚类上的分布。通过同时优化这两个部分,我们可以同时将数据分配给聚类,学习每个聚类的潜在流形。1 Introduc...原创 2019-11-04 13:15:36 · 892 阅读 · 0 评论 -
Deep Clustering with Convolutional Autoencoders
International Conference on Neural Information Processing - 2017Code:https://github.com/XifengGuo/DCEC1 Introduction给定无标注图像,如何将其分成K个潜在的空间?传统算法:1)首先根据领域特定的知识提取feature vectors 2)对提取出的feature vectors应...原创 2019-10-20 14:06:57 · 2901 阅读 · 2 评论 -
无监督图像聚类
《基于卷积神经网络的大规模人脸聚类》-申小敏使用上图的CNN结构,在LFW人脸数据库上进行训练,得到一个经过预训练的CNN网络。使用预训练的CNN网络提取人脸特征,提取出的特征用于K-means聚类得出最后的聚类结果。评价指标:Rand Index聚类评价,F1-measure聚类评价。 《Learning Feature Representations with K-me...原创 2018-09-18 08:01:16 · 5668 阅读 · 0 评论 -
Deep Subspace Clustering Networks
1.Introduction 本文引入了一个novel deep neural network来无监督地学习非线性mapping,它也适用于子空间聚类。本文的deep subspace clustering networks(DSC-Nets)是建立在深度自编码器上的,它将data point通过一系列encoder layers非线性地映射到一个潜在的子空间。本文的key cont...原创 2018-05-20 22:25:37 · 3914 阅读 · 1 评论 -
Robust Recovery of Subspace Structures by Low-Rank Representation
I introduction本文工作:我们开发了一个简单有效的方法,叫做LRR,在一些类似于行为分割,图像聚类,人脸识别,显著检验的应用上可以实现state-of-the-art的性能。我们的工作从一个子空间恢复干扰数据延伸到了多个子空间。相比于文献【20】需要已知子空间的基才能处理corrupted data的方法,我们的方法具有自主性,i.e.不需要附加的clean dataII Relate...原创 2018-07-03 09:28:17 · 2957 阅读 · 0 评论