【Leetcode】119. 杨辉三角Ⅱ

题目描述:

给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 行。

在杨辉三角中,每个数是它左上方和右上方的数的和。

示例:

输入: 3
输出: [1,3,3,1]

进阶:

你可以优化你的算法到 O(k) 空间复杂度吗?

解题思路:

1,常规思路,之前求过杨辉三角,我们再求一遍,输出最后一行。

2,进阶思路,设置结果行R和结果行的上一行L,按照R[i]=L[i-1]+L[i]。

3,有公式(emmm........)。

                    r_{i}=r_{i-1}*(index-i+1)/i

 

AC代码:

1,常规:

class Solution {
public:
    vector<int> getRow(int rowIndex) {
        vector<vector<int>> P;
        for(int i=0;i<=rowIndex;i++)
        {
            vector<int> row;
            for(int j=0;j<=i;j++)
            {
                if(i==0||j==i)
                    row.push_back(1);
                else
                    row.push_back(P[i-1][j-1]+P[i-1][j]);
            }
            P.push_back(row);
        }
        return P[rowIndex];
    }
};

2,进阶:

class Solution {
public:
    vector<int> getRow(int rowIndex) {
        vector<int> res(rowIndex+1,1);
        vector<int> lastRow(rowIndex+1,1);
        for(int i=0; i<rowIndex; ++i)
        {
            for(int j=1;j<i+1;j++)
            {
                res[j]=lastRow[j-1]+lastRow[j];
            }
            lastRow = res;
        }
        return res;
    }
};

3,公式:

vector<int> getRow(int rowIndex) {
    vector<int> r;
    r.resize(rowIndex + 1);
    r[0] = r[rowIndex] = 1;
    for (auto i = 1; i < (r.size() + 1) / 2; ++i) 
    {
        r[i] = r[rowIndex - i] = (unsigned long)r[i - 1] * (unsigned long)(rowIndex - i + 1) / i;
    }
    return r;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值